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OA.1 Omitted Proofs for Section 3

OA.1.1 Proof of Lemma 6

Leader x’s expected payoff from stopping at t is

L(x, t) = lim
ε→0

(
qL(x)

∫ t−ε

0

e−rτdG1
F (τ)H − (1− qL(x))

∫ t−ε

0

e−rτdG0
F (τ)L

)
.

Follower y’s expected payoff from stopping at t is

F(y, t) =e−rt
(
qF (y)

(
(1−G1

L(t))H + (1−G0
L(t))L

)
− (1−G0

L(t))L
)

− e−rt lim
ε→0

(
qF (y)(1−G1

L(t− ε)) + (1− qF (y))(1−G0
L(t− ε))

)
c.

I show the leader’s expected payoff is supermodular and the follower’s is submodular.
Denote ∆L(x, t, t′) = L(x, t′)− L(x, t). For t′ > t and x′ > x,

∆L(x′, t, t′)−∆L(x, t, t′)

= lim
ε→0

(qL(x′)− qL(x))

(∫ t′−ε

t−ε
e−rτdG1

F (τ)H +

∫ t′−ε

t−ε
e−rτdG0

F (τ)L

)
.

By MLRP, qL(x′) − qL(x) > 0. For t′ > t, Gθ
F (t′) ≥ Gθ

F (t). So ∆L(x′, t, t′) −
∆L(x, t, t′) > 0. Therefore, L(x, t) is supermodular in (x, t). By Topkis’s theorem,
σL(x) = arg maxt≥0 L(x, t) is non-decreasing in x.
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Denote ∆F(y, t, t′) = F(y, t′)−F(y, t). For t′ > t and y′ > y,

∆F(y′, t, t′)−∆F(y, t, t′)

=(qF (y′)− qF (y))
(
e−rt

′
(1−G1

L(t′))− e−rt(1−G1
L(t))

)
H

− (qF (y′)− qF (y))
(
e−rt(1−G0

L(t))− e−rt′(1−G0
L(t′))

)
L

− lim
ε→0

c

(
e−r(t

′−ε)(qF (y′)− qF (y))
(
(1−G1

L(t′ − ε)) + (1−G0
L(t′ − ε))

)
+ e−r(t−ε)(qF (y′)− qF (y))

(
(1−G1

L(t− ε)) + (1−G0
L(t− ε))

))
.

By MLRP, qF (y′) − qF (y) > 0. For t′ > t, e−rt′(1 − Gθ
L(t′)) < e−rt(1 − Gθ

L(t′)) ≤
e−rt(1−Gθ

L(t)). So ∆F(y′, t, t′)−∆F(y, t, t′) < 0. Therefore, F(y, t) is submodular in
(y, t). By Topkis’s theorem, σF (y) = arg maxt≥0F(y, t) is non-increasing in y.

OA.2 Omitted Proofs for Section 4

OA.2.1 Proof of Lemma 10

Define Qθ(µ) := (1−F θ(µ))/(1− F̂ θ(µ)). It follows directly from (7) that h(µ) > ĥ(µ)

if and only if Q1(µ) < Q0(µ). Moreover, by (7), for all µ ∈ (0, 1),

f 0(µ)

f̂ 0(µ)
=
f 1(µ)

f̂ 1(µ)
=
f 0(µ) + f 1(µ)

f̂ 0(µ) + f̂ 1(µ)
. (OA.1)

Because F �ULR F̂ , all three ratios in (OA.1) are unimodal and symmetric about 1/2.
Then Qθ(µ) is unimodal with maximum achieved at µ̂θQ < 1/2 (Hopkins and Kornienko,
2007, Proposition 2). Moreover, limµ→0Q

1(µ) = limµ→0Q
0(µ) = 1 and

lim
µ→1

Q1(µ) = lim
µ→1

1− F 1(µ)

1− F̂ 1(µ)
= lim

µ→1

f 1(µ)

f̂ 1(µ)
= lim

µ→1

f 0(µ)

f̂ 0(µ)
= lim

µ→1

1− F 0(µ)

1− F̂ 0(µ)
= lim

µ→1
Q0(µ).

The proof concerns comparing the derivatives of Q1 and Q0, which are given by

dQ1

dµ
=

f 1(µ)

1− F̂ 1(µ)

(
Q1(µ)− f 1(µ)

f̂ 1(µ)

)
and

dQ0

dµ
=

f 0(µ)

1− F̂ 0(µ)

(
Q0(µ)− f 0(µ)

f̂ 0(µ)

)
.

By MLRP and (OA.1), f 1(µ)/(1− F̂ 1(µ)) < f 0(µ)/(1− F̂ 0(µ)) for all µ.
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Consider µ ≥ max{µ̂1
Q, µ̂

0
Q}, then both Q1(µ) and Q0(µ) are decreasing. Suppose

there exists µ̃ such that Q0(µ̃) ≤ Q1(µ̃). Then at µ̃, dQ0/dµ < dQ1/dµ < 0. This is a
contradiction because limµ→1Q

1(µ) = limµ→1Q
0(µ).

At µ = max{µ̂1
Q, µ̂

0
Q}, one of dQ1/dµ and dQ0/dµ is zero and the other is strictly

negative. As is shown above, Q1(µ) < Q0(µ), so it must be that dQ1/dµ < 0 and
dQ0/dµ = 0. This implies µ̂1

Q < µ̂0
Q.

Consider µ ∈ (µ̂1
Q, µ̂

0
Q), then Q1 is decreasing and Q0 is increasing. dQ1/dµ < 0

and dQ0/dµ > 0 implies Q1(µ) < f 1(µ)/f̂ 1(µ) = f 0(µ)/f̂ 0(µ) < Q0(µ).
Consider µ ≤ µ̂1

Q, then both Q1(µ) and Q0(µ) are increasing. Suppose there exists
µ̃ such that Q0(µ̃) ≤ Q1(µ̃). Then at µ̃, 0 < dQ1/dµ < dQ0/dµ. This is a contradiction
because limµ→0Q

1(µ) = limµ→0Q
0(µ).

OA.2.2 Proof of Lemma 11

Let hθ(µ) = f θ(µ)/(1−F θ(µ)) denote the hazard rate conditional on θ. The posterior
distribution conditional on θ = 0 satisfies the definition of the ULR order: F 0(µ) �ULR

F̂ 0(µ). Then h0(µ) > ĥ0(µ) for µ ≥ 1/2 (Hopkins and Kornienko, 2007, Corollary 1).
The ULR order implies the ex ante distribution F̂ is a mean-preserving spread of F
(Hopkins and Kornienko, 2007, Proposition 1), so F 1(µ) + F 0(µ) > F̂ 1(µ) + F̂ 0(µ) for
µ ≥ 1/2. It then follows from Lemma 10 that F 1(µ) > F̂ 1(µ).

OA.2.3 Proof of Lemma 12

For any two distributions F �ULR F̂ , f/f̂ is unimodal. The likelihood ratio of F and
(1− λ)F + λF̂ is f/((1− λ)f + λf̂) and the likelihood ratio of (1− λ)F + λF̂ and F̂
is ((1− λ)f + λf̂)/f̂ . Both are unimodal as implied by that f/f̂ is unimodal.

F �ULR F̂ implies the mean of F is (weakly) higher than the mean of F̂ . So the
mean of F is (weakly) higher than the mean of (1−λ)F+λF̂ , which is (weakly) greater
than the mean of F̂ . The result follows.
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OA.2.4 Proof of Claim 4

The proof is mostly algebraic. For conciseness, I omit the argument of the functions.
After some rearranging, V can be written in terms of h,

V = q

(
1− 1− µ

µ

)
︸ ︷︷ ︸

=:b

−q
(

1− 1− µ
µ

)(
1− µ
µ

1− F 1

F 1

)
︸ ︷︷ ︸

=:a

h.

That is, V = ah+ b. Let the superscript denote the (partial) derivative. Then hλ/hµ−
Vλ/Vµ = (hλ/hµ)(aµh+bµ)/Vµ−(aλh+bλ)/Vµ. Because Vµ > 0, aµh+bµ > −ahµ > 0,
showing Claim 4 is equivalent to showing hλ/hµ < (aλh + bλ)/(aµh + bµ). I prove the
following chain of inequality: for all µ ≥ 1/2, hλ/hµ < qλ/qµ < (aλh+ bλ)/(aµh+ bµ).

For the first inequality hλ/hµ < qλ/qµ, let q = 1/(1 +m+ dh) where

q = 1

/(
1 +

1− µ
µ

1

F 1︸ ︷︷ ︸
=:m

−
(

1− µ
µ

)2
1− F 1

F 1︸ ︷︷ ︸
=:d

h

)
.

It reduces to showing hλ/hµ − qλ/qµ = (hλ/hµ) (1− hµd/qµ) − (mλ + dλh)/qµ < 0.

hλ < 0 (Lemma 10), hµ > 0, qµ > 0, and d < 0, so (hλ/hµ) (1− hµd/qµ) < 0. Note
that d = −m(1 − µ)/µ + ((1 − µ)/µ)2. Because (1 − F 0)/(1 − F 1) < 1 (MLRP) and
mλ > 0 (Lemma 11), dλh = −mλ(1− F 0)/(1− F 1) > −mλ, so (mλ + dλh)/qµ > 0.

For the second inequality qλ/qµ < (aλh+ bλ)/(aµh+ bµ), the right-hand side is

qλ

=:α︷ ︸︸ ︷(
2− 1

µ

)(
1− 1− F 0

F 1

) =:β︷ ︸︸ ︷
−
(

1− F 1

F 1

)λ
1− µ
µ

bh

qµ
(

2− 1

µ

)(
1− 1− F 0

F 1

)
︸ ︷︷ ︸

=α

+

(
2− 1

µ

)µ
q

(
1− 1− F 0

F 1

)
−
(

1− µ
µ

1− F 1

F 1

)µ
bh︸ ︷︷ ︸

=:η

.

It reduces to showing qλ/qµ−(aλh+bλ)/(aµh+bµ) = (qλ/qµ)η/(qµα+η)−β/(qµα+η) <

0. Because qµα+ η > 0, it is equivalent to qµ/qλ − η/β > 0. Writing out all the terms,
this inequality follows from Lemma 10, Lemma 11, MLRP, IHRP, and symmetry.
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OA.3 Omitted Proofs for Section 5

OA.3.1 Proof of Theorem 2

Equilibrium conditions

Leader-follower continuation game. Introducing a flow cost for the leader does
not affect the follower’s incentive. Same as the no-flow-cost case, the follower’s first-
order condition implies x′(t) = φ(x(t), y(t)), where

φ(x, y) := −r
(
ρ0f

1(y)(1− F 1(x))(H − c)− (1− ρ0)f 0(y)(1− F 0(x))(L+ c)

ρ0f 1(y)f 1(x)(H − c)− (1− ρ0)f 0(y)f 0(x)(L+ c)

)
.

For leader of type x, same as before, denote his belief at the beginning of the leader-
follower continuation game by qL(x) = Pr(θ = 1|x, sF < y(0)). His expected payoff
from disinvesting at t is

L(x, t) =qL(x)

·
(∫ t

0

−y′(τ)
f 1(y(τ))

F 1(y(0))

(
e−rτH −

∫ τ

0

e−rτ̃ηdτ̃

)
dτ − F 1(y(t))

F 1(y(0))

∫ t

0

e−rτ̃ηdτ̃

)
− (1− qL(x))

·
(∫ t

0

−y′(τ)
f 0(y(τ))

F 0(y(0))

(
e−rτL+

∫ τ

0

e−rτ̃ηdτ̃

)
dτ +

F 0(y(t))

F 0(y(0))

∫ t

0

e−rτ̃ηdτ̃

)
.

The first-order condition implies y′(t) = ψ(x(t), y(t)), where

ψ(x, y) := −η
(

ρ0f
1(x)F 1(y) + (1− ρ0)f 0(x)F 0(y)

ρ0f 1(x)f 1(y)H − (1− ρ0)f 0(x)f 0(y)L

)
.

Initial conditions. With strictly monotonic strategies, the flow cost does not affect
the initial conditions. So the same as the no-flow cost case, y(0) < z = x(0) and z’s
indifference condition implies W0(x(0), y(0)) = c, where

W0(x, y) :=
ρ0f

1(x)(F 1(x)− F 1(y))H

ρ0f 1(x)F 1(x) + (1− ρ0)f 0(x)F 0(x)
− (1− ρ0)f 0(x)(F 0(x)− F 0(y))L

ρ0f 1(x)F 1(x) + (1− ρ0)f 0(x)F 0(x)
.

Optimality

To show optimality, one needs to show (i) F(y, t) is single-peaked in t, (ii) L(x, t) is
single-peaked in t, and (iii) all types above z invest and all types below do not. (i) is

5



the same as the no-flow-cost case. The following lemma establishes (ii) holds. Given
(i) and (ii), the proof of (iii) is the same as the no-flow-cost case.

Lemma OA.1. For a fixed x, L(x, t) is single-peaked in t.

Proof. The proof is analogous to the proof of Lemma 7. To simplify notation, define

M(x, t) :=
qL(x)

F 1(y(0))
(−y′(t))f 1(y(t))H − 1− qL(x)

F 0(y(0))
(−y′(t))f 0(y(t))L,

N(x, t) :=

(
qL(x)

F 1(y(0))
F 1(y(t)) +

1− qL(x)

F 0(y(0))
F 0(y(t))

)
η.

In words, e−rtM(x, t)dt is type x’s marginal benefit from waiting for dt before disin-
vesting and e−rtN(x, t)dt is the marginal cost. Let the subscript i denote the partial
derivative with respect to the i-th argument. The first-order condition of L implies
M(x(t), t) = N(x(t), t). Because strategies are strictly monotone and everywhere dif-
ferentiable, at each t, there exists one and only one type whose first-order condition is
satisfied at t. Denote the type whose first-order condition is satisfied at t∗ by x∗, that
is, M(x∗, t∗) = N(x∗, t∗). Suppose x∗ mimics the behavior of type x̂ by stopping at t̂.
Because M(x, t) is differentiable in x, by the fundamental theorem of calculus,

M(x∗, t̂) = M(x̂, t̂) +

∫ x∗

x̂

M1(x, t̂)dx = N(x̂, t̂) +

∫ x∗

x̂

M1(x, t̂)dx,

where M1(x, t̂) = dM(x, t̂)/dx. The second equality follows from x̂’s first-order condi-
tion M(x̂, t̂) = N(x̂, t̂). By MLRP, qL(x) is decreasing in x and because y′(t) < 0, so
M1(x, t̂) > 0. Thus, if x̂ < x∗, then

M(x∗, t̂) = N(x̂, t̂) +

∫ x∗

x̂

M1(x, t̂)dx > N(x̂, t̂) > N(x∗, t̂),

where the first inequality follows from
∫ x∗
x̂
M1(x, t̂)dx > 0, and the second inequality

follows from that N is decreasing in x because of MLRP and y(t) < y(0). Similarly, if
x̂ > x∗, then

∫ x∗
x̂
M1(x, t̂)dx < 0, so

M(x∗, t̂) = N(x̂, t̂) +

∫ x∗

x̂

M1(x, t̂)dx < N(x̂, t̂) < N(x∗, t̂).

x(t) is increasing, so x̂ < (>)x∗ is equivalent to t̂ < (>)t∗. The above argument shows
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M(x∗, t̂)−N(x∗, t̂) > 0 for all t̂ < t∗ and M(x∗, t̂)−N(x∗, t̂) < 0 for all t̂ > t∗.

Existence

In any dynamic equilibrium in strictly monotonic and differentiable strategies,
(i) by optimality, players must get strictly positive payoff;
(ii) strategies are strictly monotone: x′(t) > 0 and y′(t) < 0 for all t ≥ 0;
(iii) strategies are differentiable for all t ≥ 0 and x(t), y(t) ∈ (0, 1).

(i) In the leader-follower game, for the leader, disinvesting at t = 0 generates payoff
0 for any types of the leader, that is, L(x, 0) = 0 for all x ≥ x(0). By Lemma OA.1,
L(x, t) is single-peaked in t, so by optimality, if a type optimally disinvests at t > 0,
he must expect to get a strictly higher payoff than disinvesting at t = 0. That is,
L(x(t), t) > L(x(t), 0) = 0 for all x(t) > x(0). For the follower, F(y(t), t) > 0 if and
only if

ρ0
1− ρ0

f 1(y(t))

f 0(y(t))

1− F 1(x(t))

1− F 0(x(t))
>
L+ c

H − c. (OA.2)

I now show players’ expected payoff at the beginning of the game is positive. Note that

ρ0
1− ρ0

f 1(x(0))

f 0(x(0))

1− F 1(x(0))

1− F 0(x(0))
>

ρ0
1− ρ0

f 1(y(0))

f 0(y(0))

1− F 1(x(0))

1− F 0(x(0))
>
L+ c

H − c,

where the first inequality follows from x(0) > y(0), and the second inequality follows
from evaluating (OA.2) at t = 0. This implies z’s ex ante expected payoff is strictly
positive. By MLRP, all types above z receive strictly positive payoffs. Types below z

do not invest at the beginning of the game so their payoff is at least 0.
(ii) y′(t) < 0 if and only if

ρ0
1− ρ0

f 1(y(t))

f 0(y(t))

f 1(x(t))

f 0(x(t))
>
L

H
. (OA.3)

Given (OA.2), x′(t) > 0 if and only if

ρ0
1− ρ0

f 1(y(t))

f 0(y(t))

f 1(x(t))

f 0(x(t))
<
L+ c

H − c. (OA.4)

(iii) Because φ(·, ·) and ψ(·, ·) are autonomous first-order differential equations and
are continuous for all (x, y) such that φ(x, y) > 0 and ψ(x, y) < 0, and x(t) and y(t)

are bounded, so as t→∞, x′(t)→ 0 and y′(t)→ 0. Note that x′(t) = 0 and y′(t) = 0
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if and only if x(t) = 1 and y(t) = 0. So φ(x(t), y(t))→ 0 and ψ(x(t), y(t))→ 0 if and
only if x(t)→ 1 and y(t)→ 0.

Define D ⊂ (0, 1)2 and D0 ⊂ (0, 1)2 as

D := {(x, y) : (OA.2), (OA.3) and (OA.4) hold},

D0 := D ∩ {(x, y) : x > y and V (x, y) = c}.

In words, if a solution (x(t), y(t)) to the differential system (9) is an equilibrium, then
it must be that (x(t), y(t)) ∈ D for all t ≥ 0 with initial values (x(0), y(0)) ∈ D0.

It is helpful to consider the (x, y)-plane and the differential equation

y′(x) = Υ(x, y) :=
ψ(x, y)

φ(x, y)
, ∀(x, y) ∈ D. (OA.5)

By definition, Υ(x, y) is continuous in (x, y) for all (x, y) ∈ D. An equilibrium is a
solution y(x) to the differential equation (OA.5) in D with y(x) < x that goes through
a point in D0 and converges to 0 as x goes to 1. Showing an equilibrium exists and
is unique is equivalent to showing such solution exists and is unique. In what follows,
Lemma OA.2 shows there exists a trajectory in D that converges to 0 as x goes to 1.
Under parametric restriction (OA.12), this trajectory is unique. Lemma OA.3 shows
this (unique) trajectory goes through one and only one point in D0 for y(x) < x. Thus
the equilibrium is unique.

Figure OA.1 illustrates the unique equilibrium trajectory (red arrowed curve) which
goes through exactly one point in D0 and converges to the point (1, 0). All other
trajectories (black arrowed curves) will diverge to the boundaries of D. Figure OA.1
also displays annotations that facilitate the rest of the proof.

Lemma OA.2. For any feasible parameters, there exists a solution y(x) to the differ-
ential equation (OA.5) in D with y(x)→ 0 as x→ 1.

Proof. Consider the boundaries of D. For any fixed x ∈ (0, 1), let βF (x) be such that

ρ0
1− ρ0

f 1(βF (x))

f 0(βF (x))

1− F 1(x)

1− F 0(x)
=
L+ c

H − c, (OA.6)

βf (x) be such that
ρ0

1− ρ0
f 1(βf (x))

f 0(βf (x))

f 1(x)

f 0(x)
=
L

H
, (OA.7)
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0.75 1
0

0.45

x̄

y

α(x)

βε(x)
β(x)

x

y

D0

D
Dε

Du

Figure OA.1: Equilibrium trajectory (red arrowed curve) and sample trajectories (non-
equilibrium, black arrowed curves) to the differential system (9) for ρ0 = 1/2, H =
L = 1, r = 1/5, c = 0.38, η = 1/20 and posterior beliefs distributed according to
Beta(1 + θ, 1 + (1− θ)).

and α(x) be such that
ρ0

1− ρ0
f 1(α(x))

f 0(α(x))

f 1(x)

f 0(x)
=
L+ c

H − c. (OA.8)

Finally, define
β(x) := max

x∈(0,1)
{βF (x), βf (x)}.

By IHRP, βf (x) and βF (x) intersect at most once for x ∈ (0, 1).

Claim OA.1. (i) D is non-empty. (ii) (1, 0) ∈ cl(D) and (0, 1) ∈ cl(D).

Proof. (i) Fix x ∈ (0, 1). By MLRP, the left-hand side of (OA.6) evaluated at any
(x′, y′) > (x, βF (x)) is strictly higher than (L+ c)/(H− c), the left-hand side of (OA.7)
evaluated at any (x′, y′) > (x, βf (x)) is strictly higher than L/H, and the left-hand side
of (OA.8) evaluated at any (x′, y′) < (x, α(x)) is strictly lower than (L + c)/(H − c).
α(x) > β(x) for all x ∈ (0, 1). So D is non-empty.

(ii) Fix x ∈ (0, 1). Consider (OA.6). Take the limit of both sides as x → 1.
The right-hand side is constant at (L + c)/(H − c). On the left-hand side, because
limx→1

1−F 1(x)
1−F 0(x)

= limx→1
f1(x)
f0(x)

=∞,it must be f 1(βF (x))/f 0(βF (x))→ 0, which means
βF (x)→ 0. The same argument applies for equations (OA.7) and (OA.8). This implies
(1, 0) ∈ cl(D). An analogous argument shows (0, 1) ∈ cl(D).
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By definition, for all (x, y) ∈ D, ψ(x, y) < 0 and φ(x, y) > 0, so Υ(x, y) < 0. Define
Du ∈ (0, 1)2 (the subscript u stands for “upper”) as

Du :=

{
(x, y) :

ρ0
1− ρ0

f 1(y)

f 0(y)

f 1(x)

f 0(x)
≥ L+ c

H − c

}
.

In words, Du is the set of points in the (x, y)-plane that are equal to or above α(x). By
definition and the continuity of the distribution functions, D ∪ Du is connected. For
any fixed x ∈ (0, 1), as y → α(x), Υ(x, y) → 0. Let Υ(x, y) = 0 for all (x, y) ∈ Du.
Then Υ(x, y) is continuous in (x, y) for all (x, y) ∈ D∪Du. Apply the implicit function
theorem to (OA.8), MLRP implies for all feasible parameters and x ∈ (0, 1),

α′(x) < 0 = Υ(x, α(x)).

This means α(x) is a strong lower fence (or lower solution, see Hubbard and West,
1991, Section 1.3, or Teschl, 2012, Section 1.5) for the differential equation

y′(x) = Υ(x, y) =

ψ(x, y)/φ(x, y) (x, y) ∈ D
0 (x, y) ∈ Du

. (OA.9)

Consider an ε-variation of βF (x) and βf (x). Let βF,ε(x) be such that

ρ0
1− ρ0

f 1(βF,ε(x))

f 0(βF,ε(x))

1− F 1(x)

1− F 0(x)
=
L+ c

H − c + ε, (OA.10)

and βf,ε(x) be such that

ρ0
1− ρ0

f 1(βf,ε(x))

f 0(βf,ε(x))

f 1(x)

f 0(x)
=
L

H
+ ε. (OA.11)

Define
βε(x) := max

x∈(0,1)
{βF,ε(x), βf,ε(x)},

Dε := {(x, y) : x ∈ (0, 1) and βε(x) ≤ y < α(x)}.

By MLRP, for all x ∈ (0, 1), βF,ε(x) < α(x). For all ε < (L + c)/(H − c) − L/H,
βf,ε(x) < α(x). By the same argument as Claim OA.1, Dε is non-empty, and the points
(1, 0) and (0, 1) are in the closure of Dε. Moreover, Dε ∪ Du is connected and Υ(x, y)

is continuous in (x, y) for all (x, y) ∈ Dε ∪ Du.
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Apply the implicit function theorem to (OA.10) and (OA.11), MLRP implies that
for all feasible parameters and any ε > 0, β′F,ε(x) and β′f,ε(x) are both finite and
negative. Therefore β′ε(x) > −∞ for all x ∈ (0, 1).

Claim OA.2. There exists ε̂ > 0 such that Υ(x, βε̂(x)) < β′ε̂(x) for all x.

Proof. For all x ∈ (0, 1), by definition, as ε → 0, βε(x) → β(x), which implies
Υ(x, βε(x)) → −∞. So for any x, there exists ε(x) > 0 (ε might depend on x)
such that for all ε < ε(x), Υ(x, βε(x)) < β′ε(x). Let ε̂ := infx∈(0,1) ε(x). It remains to
show ε̂ > 0. Suppose ε̂ = 0. Then there exists a sequence εn with εn → 0 such that
for each εn there exists xn such that Υ(xn, βεn(xn)) ≥ β′(xn). This is a contradiction
because for all xn, β′(xn) > −∞ but as εn → 0, Υ(xn, βεn(xn))→ −∞.

This means βε(x) is a strong upper fence (or upper solution) for the differential
equation (OA.9). Therefore, in Dε ∪Du, there exists a solution y(x) to the differential
equation (OA.5) with βε(x) ≤ y(x) ≤ α(x) for all x ∈ (0, 1) (see Hubbard and West,
1991, Theorem 1.4.4, or Teschl, 2012, Lemma 1.2).

The above argument establishes there exists a solution in Dε ∪ Du. It remains to
show that the solution is within Dε (and thus within D), not in Du. This boils down
to showing that solutions in Du do not converge to 0 as x→ 1. This follows from the
definition that y′(x) = 0 for all (x, y) ∈ Du. So for any (x, y(x)) ∈ Du that solves the
differential equation (OA.9), y(x) > 0 for all x.

Uniqueness

Assumption. Assume the following condition holds:

∀(x, y) ∈ D, ∂Υ(x, y)/∂y ≥ 0. (OA.12)

The uniqueness of a global condition can be established if the primitives satisfy the
above condition. It can be numerically verified that (OA.12) is satisfied if f θ is induced
by signals distributed according to the Beta distributions or the Normal distributions.
Moreover, by definition, as x→ 1, α(x)→ 0 and βε(x)→ 0, so

lim
x→1
|α(x)− βε(x)| = 0. (OA.13)

Conditions (OA.12) and (OA.13) imply the solution is unique in Dε (see Hubbard and
West, 1991, Theorem 1.4.5, or Teschl, 2012, Section 1.5).
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The above argument establishes the unique solution is in Dε. It remains to show
this solution is unique in D. Because D = Dε ∪ {(x, y) : x ∈ (0, 1) and β(x) < y <

βε(x)}, it boils down to showing there does not exist a solution in the set {(x, y) :

x ∈ (0, 1) and β(x) < y < βε(x)}. For all y(x) such that β(x) < y(x) < βε(x),
y′(x)→ −∞, which implies for all x ∈ (0, 1), y(x)→ β(x) > 0.

Denote this unique solution by ŷ(x). I prove there exists a unique set of initial
values satisfying ŷ(x). This is summarized in the following lemma.

Lemma OA.3. There exists a unique (x0, y0) ∈ D0 such that y0 = ŷ(x0).

Proof. To simplify notation, define

`(x, y) :=
ρ0

1− ρ0
f 1(y)

f 0(y)

f 1(x)

f 0(x)
.

Recall that D0 is the set of points (x, y) ∈ D that satisfies the equation W0(x, y) = c.
Solve W0(x, y) = c for y in terms of x and denote the solution by yW0(x). By Claim 6
(iii) and (iv), yW0(x) is increasing and continuous in x for all x such that yW0(x) < x.

By a change of variable, Lemma OA.2 shows ŷ(x) also converges to 1 as x → 0.
So ŷ(x) is a strictly decreasing function that converges to 1 as x → 0 and converges
to 0 as x → 1, and satisfies `(x, ŷ(x)) ∈ (L/H, (L + c)/(H − c)) for all x ∈ (0, 1). So
points in D0 constitute a strictly increasing and continuous function that starts at a
point below ŷ(x), and ends at a point above ŷ(x). The result follows.
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