Online Appendix to "Dynamic Coordination with Payoff and Informational Externalities"

Beixi Zhou*

December 9, 2023

OA. 1 Omitted Proofs for Section 3

OA.1.1 Proof of Lemma 6

Leader x 's expected payoff from stopping at t is

$$
\mathcal{L}(x, t)=\lim _{\varepsilon \rightarrow 0}\left(q_{L}(x) \int_{0}^{t-\varepsilon} e^{-r \tau} \mathrm{~d} G_{F}^{1}(\tau) H-\left(1-q_{L}(x)\right) \int_{0}^{t-\varepsilon} e^{-r \tau} \mathrm{~d} G_{F}^{0}(\tau) L\right) .
$$

Follower y 's expected payoff from stopping at t is

$$
\begin{aligned}
\mathcal{F}(y, t)= & e^{-r t}\left(q_{F}(y)\left(\left(1-G_{L}^{1}(t)\right) H+\left(1-G_{L}^{0}(t)\right) L\right)-\left(1-G_{L}^{0}(t)\right) L\right) \\
& -e^{-r t} \lim _{\varepsilon \rightarrow 0}\left(q_{F}(y)\left(1-G_{L}^{1}(t-\varepsilon)\right)+\left(1-q_{F}(y)\right)\left(1-G_{L}^{0}(t-\varepsilon)\right)\right) c .
\end{aligned}
$$

I show the leader's expected payoff is supermodular and the follower's is submodular.
Denote $\Delta \mathcal{L}\left(x, t, t^{\prime}\right)=\mathcal{L}\left(x, t^{\prime}\right)-\mathcal{L}(x, t)$. For $t^{\prime}>t$ and $x^{\prime}>x$,

$$
\begin{aligned}
& \Delta \mathcal{L}\left(x^{\prime}, t, t^{\prime}\right)-\Delta \mathcal{L}\left(x, t, t^{\prime}\right) \\
= & \lim _{\varepsilon \rightarrow 0}\left(q_{L}\left(x^{\prime}\right)-q_{L}(x)\right)\left(\int_{t-\varepsilon}^{t^{\prime}-\varepsilon} e^{-r \tau} \mathrm{~d} G_{F}^{1}(\tau) H+\int_{t-\varepsilon}^{t^{\prime}-\varepsilon} e^{-r \tau} \mathrm{~d} G_{F}^{0}(\tau) L\right) .
\end{aligned}
$$

By $\operatorname{MLRP}, q_{L}\left(x^{\prime}\right)-q_{L}(x)>0$. For $t^{\prime}>t, G_{F}^{\theta}\left(t^{\prime}\right) \geq G_{F}^{\theta}(t)$. So $\Delta \mathcal{L}\left(x^{\prime}, t, t^{\prime}\right)-$ $\Delta \mathcal{L}\left(x, t, t^{\prime}\right)>0$. Therefore, $\mathcal{L}(x, t)$ is supermodular in (x, t). By Topkis's theorem, $\sigma_{L}(x)=\arg \max _{t \geq 0} \mathcal{L}(x, t)$ is non-decreasing in x.

[^0]Denote $\Delta \mathcal{F}\left(y, t, t^{\prime}\right)=\mathcal{F}\left(y, t^{\prime}\right)-\mathcal{F}(y, t)$. For $t^{\prime}>t$ and $y^{\prime}>y$,

$$
\begin{aligned}
& \quad \Delta \mathcal{F}\left(y^{\prime}, t, t^{\prime}\right)-\Delta \mathcal{F}\left(y, t, t^{\prime}\right) \\
& =\left(q_{F}\left(y^{\prime}\right)-q_{F}(y)\right)\left(e^{-r t^{\prime}}\left(1-G_{L}^{1}\left(t^{\prime}\right)\right)-e^{-r t}\left(1-G_{L}^{1}(t)\right)\right) H \\
& \quad-\left(q_{F}\left(y^{\prime}\right)-q_{F}(y)\right)\left(e^{-r t}\left(1-G_{L}^{0}(t)\right)-e^{-r t^{\prime}}\left(1-G_{L}^{0}\left(t^{\prime}\right)\right)\right) L \\
& \quad-\lim _{\varepsilon \rightarrow 0} c\left(e^{-r\left(t^{\prime}-\varepsilon\right)}\left(q_{F}\left(y^{\prime}\right)-q_{F}(y)\right)\left(\left(1-G_{L}^{1}\left(t^{\prime}-\varepsilon\right)\right)+\left(1-G_{L}^{0}\left(t^{\prime}-\varepsilon\right)\right)\right)\right. \\
& \quad \\
& \left.\quad \quad+e^{-r(t-\varepsilon)}\left(q_{F}\left(y^{\prime}\right)-q_{F}(y)\right)\left(\left(1-G_{L}^{1}(t-\varepsilon)\right)+\left(1-G_{L}^{0}(t-\varepsilon)\right)\right)\right) .
\end{aligned}
$$

By MLRP, $q_{F}\left(y^{\prime}\right)-q_{F}(y)>0$. For $t^{\prime}>t, e^{-r t^{\prime}}\left(1-G_{L}^{\theta}\left(t^{\prime}\right)\right)<e^{-r t}\left(1-G_{L}^{\theta}\left(t^{\prime}\right)\right) \leq$ $e^{-r t}\left(1-G_{L}^{\theta}(t)\right)$. So $\Delta \mathcal{F}\left(y^{\prime}, t, t^{\prime}\right)-\Delta \mathcal{F}\left(y, t, t^{\prime}\right)<0$. Therefore, $\mathcal{F}(y, t)$ is submodular in (y, t). By Topkis's theorem, $\sigma_{F}(y)=\arg \max _{t \geq 0} \mathcal{F}(y, t)$ is non-increasing in y.

OA. 2 Omitted Proofs for Section 4

OA.2.1 Proof of Lemma 10

Define $Q^{\theta}(\mu):=\left(1-F^{\theta}(\mu)\right) /\left(1-\hat{F}^{\theta}(\mu)\right)$. It follows directly from (7) that $h(\mu)>\hat{h}(\mu)$ if and only if $Q^{1}(\mu)<Q^{0}(\mu)$. Moreover, by (7), for all $\mu \in(0,1)$,

$$
\begin{equation*}
\frac{f^{0}(\mu)}{\hat{f}^{0}(\mu)}=\frac{f^{1}(\mu)}{\hat{f}^{1}(\mu)}=\frac{f^{0}(\mu)+f^{1}(\mu)}{\hat{f}^{0}(\mu)+\hat{f}^{1}(\mu)} \tag{OA.1}
\end{equation*}
$$

Because $F \succ_{\text {ULR }} \hat{F}$, all three ratios in (OA.1) are unimodal and symmetric about $1 / 2$. Then $Q^{\theta}(\mu)$ is unimodal with maximum achieved at $\hat{\mu}_{Q}^{\theta}<1 / 2$ (Hopkins and Kornienko, 2007, Proposition 2). Moreover, $\lim _{\mu \rightarrow 0} Q^{1}(\mu)=\lim _{\mu \rightarrow 0} Q^{0}(\mu)=1$ and

$$
\lim _{\mu \rightarrow 1} Q^{1}(\mu)=\lim _{\mu \rightarrow 1} \frac{1-F^{1}(\mu)}{1-\hat{F}^{1}(\mu)}=\lim _{\mu \rightarrow 1} \frac{f^{1}(\mu)}{\hat{f}^{1}(\mu)}=\lim _{\mu \rightarrow 1} \frac{f^{0}(\mu)}{\hat{f}^{0}(\mu)}=\lim _{\mu \rightarrow 1} \frac{1-F^{0}(\mu)}{1-\hat{F}^{0}(\mu)}=\lim _{\mu \rightarrow 1} Q^{0}(\mu) .
$$

The proof concerns comparing the derivatives of Q^{1} and Q^{0}, which are given by

$$
\frac{\mathrm{d} Q^{1}}{\mathrm{~d} \mu}=\frac{f^{1}(\mu)}{1-\hat{F}^{1}(\mu)}\left(Q^{1}(\mu)-\frac{f^{1}(\mu)}{\hat{f}^{1}(\mu)}\right) \text { and } \frac{\mathrm{d} Q^{0}}{\mathrm{~d} \mu}=\frac{f^{0}(\mu)}{1-\hat{F}^{0}(\mu)}\left(Q^{0}(\mu)-\frac{f^{0}(\mu)}{\hat{f}^{0}(\mu)}\right) .
$$

By MLRP and (OA.1), $f^{1}(\mu) /\left(1-\hat{F}^{1}(\mu)\right)<f^{0}(\mu) /\left(1-\hat{F}^{0}(\mu)\right)$ for all μ.

Consider $\mu \geq \max \left\{\hat{\mu}_{Q}^{1}, \hat{\mu}_{Q}^{0}\right\}$, then both $Q^{1}(\mu)$ and $Q^{0}(\mu)$ are decreasing. Suppose there exists $\tilde{\mu}$ such that $Q^{0}(\tilde{\mu}) \leq Q^{1}(\tilde{\mu})$. Then at $\tilde{\mu}, \mathrm{d} Q^{0} / \mathrm{d} \mu<\mathrm{d} Q^{1} / \mathrm{d} \mu<0$. This is a contradiction because $\lim _{\mu \rightarrow 1} Q^{1}(\mu)=\lim _{\mu \rightarrow 1} Q^{0}(\mu)$.

At $\mu=\max \left\{\hat{\mu}_{Q}^{1}, \hat{\mu}_{Q}^{0}\right\}$, one of $\mathrm{d} Q^{1} / \mathrm{d} \mu$ and $\mathrm{d} Q^{0} / \mathrm{d} \mu$ is zero and the other is strictly negative. As is shown above, $Q^{1}(\mu)<Q^{0}(\mu)$, so it must be that $\mathrm{d} Q^{1} / \mathrm{d} \mu<0$ and $\mathrm{d} Q^{0} / \mathrm{d} \mu=0$. This implies $\hat{\mu}_{Q}^{1}<\hat{\mu}_{Q}^{0}$.

Consider $\mu \in\left(\hat{\mu}_{Q}^{1}, \hat{\mu}_{Q}^{0}\right)$, then Q^{1} is decreasing and Q^{0} is increasing. $\mathrm{d} Q^{1} / \mathrm{d} \mu<0$ and $\mathrm{d} Q^{0} / \mathrm{d} \mu>0$ implies $Q^{1}(\mu)<f^{1}(\mu) / \hat{f}^{1}(\mu)=f^{0}(\mu) / \hat{f}^{0}(\mu)<Q^{0}(\mu)$.

Consider $\mu \leq \hat{\mu}_{Q}^{1}$, then both $Q^{1}(\mu)$ and $Q^{0}(\mu)$ are increasing. Suppose there exists $\tilde{\mu}$ such that $Q^{0}(\tilde{\mu}) \leq Q^{1}(\tilde{\mu})$. Then at $\tilde{\mu}, 0<\mathrm{d} Q^{1} / \mathrm{d} \mu<\mathrm{d} Q^{0} / \mathrm{d} \mu$. This is a contradiction because $\lim _{\mu \rightarrow 0} Q^{1}(\mu)=\lim _{\mu \rightarrow 0} Q^{0}(\mu)$.

OA.2.2 Proof of Lemma 11

Let $h^{\theta}(\mu)=f^{\theta}(\mu) /\left(1-F^{\theta}(\mu)\right)$ denote the hazard rate conditional on θ. The posterior distribution conditional on $\theta=0$ satisfies the definition of the ULR order: $F^{0}(\mu) \succ_{\text {ULR }}$ $\hat{F}^{0}(\mu)$. Then $h^{0}(\mu)>\hat{h}^{0}(\mu)$ for $\mu \geq 1 / 2$ (Hopkins and Kornienko, 2007, Corollary 1). The ULR order implies the ex ante distribution \hat{F} is a mean-preserving spread of F (Hopkins and Kornienko, 2007, Proposition 1), so $F^{1}(\mu)+F^{0}(\mu)>\hat{F}^{1}(\mu)+\hat{F}^{0}(\mu)$ for $\mu \geq 1 / 2$. It then follows from Lemma 10 that $F^{1}(\mu)>\hat{F}^{1}(\mu)$.

OA.2.3 Proof of Lemma 12

For any two distributions $F \succ_{\mathrm{ULR}} \hat{F}, f / \hat{f}$ is unimodal. The likelihood ratio of F and $(1-\lambda) F+\lambda \hat{F}$ is $f /((1-\lambda) f+\lambda \hat{f})$ and the likelihood ratio of $(1-\lambda) F+\lambda \hat{F}$ and \hat{F} is $((1-\lambda) f+\lambda \hat{f}) / \hat{f}$. Both are unimodal as implied by that f / \hat{f} is unimodal.
$F \succ_{\text {ULR }} \hat{F}$ implies the mean of F is (weakly) higher than the mean of \hat{F}. So the mean of F is (weakly) higher than the mean of $(1-\lambda) F+\lambda \hat{F}$, which is (weakly) greater than the mean of \hat{F}. The result follows.

OA.2.4 Proof of Claim 4

The proof is mostly algebraic. For conciseness, I omit the argument of the functions. After some rearranging, \mathcal{V} can be written in terms of h,

$$
\mathcal{V}=\underbrace{q\left(1-\frac{1-\mu}{\mu}\right)}_{=: b}-q\left(1-\frac{1-\mu}{\mu}\right)\left(\frac{1-\mu}{\mu} \frac{1-F^{1}}{F^{1}}\right) h .
$$

That is, $\mathcal{V}=a h+b$. Let the superscript denote the (partial) derivative. Then $h^{\lambda} / h^{\mu}-$ $\mathcal{V}^{\lambda} / \mathcal{V}^{\mu}=\left(h^{\lambda} / h^{\mu}\right)\left(a^{\mu} h+b^{\mu}\right) / \mathcal{V}^{\mu}-\left(a^{\lambda} h+b^{\lambda}\right) / \mathcal{V}^{\mu}$. Because $\mathcal{V}^{\mu}>0, a^{\mu} h+b^{\mu}>-a h^{\mu}>0$, showing Claim 4 is equivalent to showing $h^{\lambda} / h^{\mu}<\left(a^{\lambda} h+b^{\lambda}\right) /\left(a^{\mu} h+b^{\mu}\right)$. I prove the following chain of inequality: for all $\mu \geq 1 / 2, h^{\lambda} / h^{\mu}<q^{\lambda} / q^{\mu}<\left(a^{\lambda} h+b^{\lambda}\right) /\left(a^{\mu} h+b^{\mu}\right)$.

For the first inequality $h^{\lambda} / h^{\mu}<q^{\lambda} / q^{\mu}$, let $q=1 /(1+m+d h)$ where

$$
q=1 /(1+\underbrace{\frac{1-\mu}{\mu} \frac{1}{F^{1}}}_{=: m}-\left(\frac{1-\mu}{\mu}\right)^{2} \frac{1-F^{1}}{F^{1}} h) .
$$

It reduces to showing $h^{\lambda} / h^{\mu}-q^{\lambda} / q^{\mu}=\left(h^{\lambda} / h^{\mu}\right)\left(1-h^{\mu} d / q^{\mu}\right)-\left(m^{\lambda}+d^{\lambda} h\right) / q^{\mu}<0$. $h^{\lambda}<0$ (Lemma 10), $h^{\mu}>0, q^{\mu}>0$, and $d<0$, so $\left(h^{\lambda} / h^{\mu}\right)\left(1-h^{\mu} d / q^{\mu}\right)<0$. Note that $d=-m(1-\mu) / \mu+((1-\mu) / \mu)^{2}$. Because $\left(1-F^{0}\right) /\left(1-F^{1}\right)<1$ (MLRP) and $m^{\lambda}>0$ (Lemma 11), $d^{\lambda} h=-m^{\lambda}\left(1-F^{0}\right) /\left(1-F^{1}\right)>-m^{\lambda}$, so $\left(m^{\lambda}+d^{\lambda} h\right) / q^{\mu}>0$.

For the second inequality $q^{\lambda} / q^{\mu}<\left(a^{\lambda} h+b^{\lambda}\right) /\left(a^{\mu} h+b^{\mu}\right)$, the right-hand side is

$$
\left.\begin{array}{l}
q^{\lambda} \overbrace{\left(2-\frac{1}{\mu}\right)}^{\left(1-\frac{1-F^{0}}{F^{1}}\right)}+\underbrace{(1-: \alpha}_{=\alpha} \overbrace{=: \eta}^{\left(2-\frac{1}{F^{1}}\right)})^{\mu} q\left(\frac{\left.1-F^{1}\right)^{0} \frac{1-\mu}{F^{1}} b h}{=: \beta}\right. \\
\left(1-\frac{1-F^{0}}{F^{1}}\right)-\left(\frac{1-\mu}{\mu} \frac{1-F^{1}}{F^{1}}\right)^{\mu} b h
\end{array}\right] .
$$

It reduces to showing $q^{\lambda} / q^{\mu}-\left(a^{\lambda} h+b^{\lambda}\right) /\left(a^{\mu} h+b^{\mu}\right)=\left(q^{\lambda} / q^{\mu}\right) \eta /\left(q^{\mu} \alpha+\eta\right)-\beta /\left(q^{\mu} \alpha+\eta\right)<$ 0 . Because $q^{\mu} \alpha+\eta>0$, it is equivalent to $q^{\mu} / q^{\lambda}-\eta / \beta>0$. Writing out all the terms, this inequality follows from Lemma 10, Lemma 11, MLRP, IHRP, and symmetry.

OA. 3 Omitted Proofs for Section 5

OA.3.1 Proof of Theorem 2

Equilibrium conditions

Leader-follower continuation game. Introducing a flow cost for the leader does not affect the follower's incentive. Same as the no-flow-cost case, the follower's firstorder condition implies $x^{\prime}(t)=\phi(x(t), y(t))$, where

$$
\phi(x, y):=-r\left(\frac{\rho_{0} f^{1}(y)\left(1-F^{1}(x)\right)(H-c)-\left(1-\rho_{0}\right) f^{0}(y)\left(1-F^{0}(x)\right)(L+c)}{\rho_{0} f^{1}(y) f^{1}(x)(H-c)-\left(1-\rho_{0}\right) f^{0}(y) f^{0}(x)(L+c)}\right) .
$$

For leader of type x, same as before, denote his belief at the beginning of the leaderfollower continuation game by $q_{L}(x)=\operatorname{Pr}\left(\theta=1 \mid x, s_{F}<y(0)\right)$. His expected payoff from disinvesting at t is

$$
\begin{aligned}
& \mathcal{L}(x, t)=q_{L}(x) \\
& \cdot\left(\int_{0}^{t}-y^{\prime}(\tau) \frac{f^{1}(y(\tau))}{F^{1}(y(0))}\left(e^{-r \tau} H-\int_{0}^{\tau} e^{-r \tilde{\tau}} \eta \mathrm{~d} \tilde{\tau}\right) \mathrm{d} \tau-\frac{F^{1}(y(t))}{F^{1}(y(0))} \int_{0}^{t} e^{-r \tilde{\tau}} \eta \mathrm{~d} \tilde{\tau}\right) \\
&-\left(1-q_{L}(x)\right) \\
& \cdot\left(\int_{0}^{t}-y^{\prime}(\tau) \frac{f^{0}(y(\tau))}{F^{0}(y(0))}\left(e^{-r \tau} L+\int_{0}^{\tau} e^{-r \tilde{\tau}} \eta \mathrm{~d} \tilde{\tau}\right) \mathrm{d} \tau+\frac{F^{0}(y(t))}{F^{0}(y(0))} \int_{0}^{t} e^{-r \tilde{\tau}} \eta \mathrm{~d} \tilde{\tau}\right) .
\end{aligned}
$$

The first-order condition implies $y^{\prime}(t)=\psi(x(t), y(t))$, where

$$
\psi(x, y):=-\eta\left(\frac{\rho_{0} f^{1}(x) F^{1}(y)+\left(1-\rho_{0}\right) f^{0}(x) F^{0}(y)}{\rho_{0} f^{1}(x) f^{1}(y) H-\left(1-\rho_{0}\right) f^{0}(x) f^{0}(y) L}\right) .
$$

Initial conditions. With strictly monotonic strategies, the flow cost does not affect the initial conditions. So the same as the no-flow cost case, $y(0)<z=x(0)$ and z 's indifference condition implies $W_{0}(x(0), y(0))=c$, where
$W_{0}(x, y):=\frac{\rho_{0} f^{1}(x)\left(F^{1}(x)-F^{1}(y)\right) H}{\rho_{0} f^{1}(x) F^{1}(x)+\left(1-\rho_{0}\right) f^{0}(x) F^{0}(x)}-\frac{\left(1-\rho_{0}\right) f^{0}(x)\left(F^{0}(x)-F^{0}(y)\right) L}{\rho_{0} f^{1}(x) F^{1}(x)+\left(1-\rho_{0}\right) f^{0}(x) F^{0}(x)}$.

Optimality

To show optimality, one needs to show (i) $\mathcal{F}(y, t)$ is single-peaked in t, (ii) $\mathcal{L}(x, t)$ is single-peaked in t, and (iii) all types above z invest and all types below do not. (i) is
the same as the no-flow-cost case. The following lemma establishes (ii) holds. Given (i) and (ii), the proof of (iii) is the same as the no-flow-cost case.

Lemma OA.1. For a fixed $x, \mathcal{L}(x, t)$ is single-peaked in t.
Proof. The proof is analogous to the proof of Lemma 7. To simplify notation, define

$$
\begin{aligned}
M(x, t) & :=\frac{q_{L}(x)}{F^{1}(y(0))}\left(-y^{\prime}(t)\right) f^{1}(y(t)) H-\frac{1-q_{L}(x)}{F^{0}(y(0))}\left(-y^{\prime}(t)\right) f^{0}(y(t)) L \\
N(x, t) & :=\left(\frac{q_{L}(x)}{F^{1}(y(0))} F^{1}(y(t))+\frac{1-q_{L}(x)}{F^{0}(y(0))} F^{0}(y(t))\right) \eta
\end{aligned}
$$

In words, $e^{-r t} M(x, t) \mathrm{d} t$ is type x 's marginal benefit from waiting for $\mathrm{d} t$ before disinvesting and $e^{-r t} N(x, t) \mathrm{d} t$ is the marginal cost. Let the subscript i denote the partial derivative with respect to the i-th argument. The first-order condition of \mathcal{L} implies $M(x(t), t)=N(x(t), t)$. Because strategies are strictly monotone and everywhere differentiable, at each t, there exists one and only one type whose first-order condition is satisfied at t. Denote the type whose first-order condition is satisfied at t^{*} by x^{*}, that is, $M\left(x^{*}, t^{*}\right)=N\left(x^{*}, t^{*}\right)$. Suppose x^{*} mimics the behavior of type \hat{x} by stopping at \hat{t}. Because $M(x, t)$ is differentiable in x, by the fundamental theorem of calculus,

$$
M\left(x^{*}, \hat{t}\right)=M(\hat{x}, \hat{t})+\int_{\hat{x}}^{x^{*}} M_{1}(x, \hat{t}) \mathrm{d} x=N(\hat{x}, \hat{t})+\int_{\hat{x}}^{x^{*}} M_{1}(x, \hat{t}) \mathrm{d} x
$$

where $M_{1}(x, \hat{t})=\mathrm{d} M(x, \hat{t}) / \mathrm{d} x$. The second equality follows from \hat{x} 's first-order condition $M(\hat{x}, \hat{t})=N(\hat{x}, \hat{t})$. By MLRP, $q_{L}(x)$ is decreasing in x and because $y^{\prime}(t)<0$, so $M_{1}(x, \hat{t})>0$. Thus, if $\hat{x}<x^{*}$, then

$$
M\left(x^{*}, \hat{t}\right)=N(\hat{x}, \hat{t})+\int_{\hat{x}}^{x^{*}} M_{1}(x, \hat{t}) \mathrm{d} x>N(\hat{x}, \hat{t})>N\left(x^{*}, \hat{t}\right),
$$

where the first inequality follows from $\int_{\hat{x}}^{x^{*}} M_{1}(x, \hat{t}) \mathrm{d} x>0$, and the second inequality follows from that N is decreasing in x because of MLRP and $y(t)<y(0)$. Similarly, if $\hat{x}>x^{*}$, then $\int_{\hat{x}}^{x^{*}} M_{1}(x, \hat{t}) \mathrm{d} x<0$, so

$$
M\left(x^{*}, \hat{t}\right)=N(\hat{x}, \hat{t})+\int_{\hat{x}}^{x^{*}} M_{1}(x, \hat{t}) \mathrm{d} x<N(\hat{x}, \hat{t})<N\left(x^{*}, \hat{t}\right)
$$

$x(t)$ is increasing, so $\hat{x}<(>) x^{*}$ is equivalent to $\hat{t}<(>) t^{*}$. The above argument shows
$M\left(x^{*}, \hat{t}\right)-N\left(x^{*}, \hat{t}\right)>0$ for all $\hat{t}<t^{*}$ and $M\left(x^{*}, \hat{t}\right)-N\left(x^{*}, \hat{t}\right)<0$ for all $\hat{t}>t^{*}$.

Existence

In any dynamic equilibrium in strictly monotonic and differentiable strategies,
(i) by optimality, players must get strictly positive payoff;
(ii) strategies are strictly monotone: $x^{\prime}(t)>0$ and $y^{\prime}(t)<0$ for all $t \geq 0$;
(iii) strategies are differentiable for all $t \geq 0$ and $x(t), y(t) \in(0,1)$.
(i) In the leader-follower game, for the leader, disinvesting at $t=0$ generates payoff 0 for any types of the leader, that is, $\mathcal{L}(x, 0)=0$ for all $x \geq x(0)$. By Lemma OA.1, $\mathcal{L}(x, t)$ is single-peaked in t, so by optimality, if a type optimally disinvests at $t>0$, he must expect to get a strictly higher payoff than disinvesting at $t=0$. That is, $\mathcal{L}(x(t), t)>\mathcal{L}(x(t), 0)=0$ for all $x(t)>x(0)$. For the follower, $\mathcal{F}(y(t), t)>0$ if and only if

$$
\begin{equation*}
\frac{\rho_{0}}{1-\rho_{0}} \frac{f^{1}(y(t))}{f^{0}(y(t))} \frac{1-F^{1}(x(t))}{1-F^{0}(x(t))}>\frac{L+c}{H-c} . \tag{OA.2}
\end{equation*}
$$

I now show players' expected payoff at the beginning of the game is positive. Note that

$$
\frac{\rho_{0}}{1-\rho_{0}} \frac{f^{1}(x(0))}{f^{0}(x(0))} \frac{1-F^{1}(x(0))}{1-F^{0}(x(0))}>\frac{\rho_{0}}{1-\rho_{0}} \frac{f^{1}(y(0))}{f^{0}(y(0))} \frac{1-F^{1}(x(0))}{1-F^{0}(x(0))}>\frac{L+c}{H-c},
$$

where the first inequality follows from $x(0)>y(0)$, and the second inequality follows from evaluating (OA.2) at $t=0$. This implies z 's ex ante expected payoff is strictly positive. By MLRP, all types above z receive strictly positive payoffs. Types below z do not invest at the beginning of the game so their payoff is at least 0 .
(ii) $y^{\prime}(t)<0$ if and only if

$$
\begin{equation*}
\frac{\rho_{0}}{1-\rho_{0}} \frac{f^{1}(y(t))}{f^{0}(y(t))} \frac{f^{1}(x(t))}{f^{0}(x(t))}>\frac{L}{H} . \tag{OA.3}
\end{equation*}
$$

Given (OA.2), $x^{\prime}(t)>0$ if and only if

$$
\begin{equation*}
\frac{\rho_{0}}{1-\rho_{0}} \frac{f^{1}(y(t))}{f^{0}(y(t))} \frac{f^{1}(x(t))}{f^{0}(x(t))}<\frac{L+c}{H-c} . \tag{OA.4}
\end{equation*}
$$

(iii) Because $\phi(\cdot, \cdot)$ and $\psi(\cdot, \cdot)$ are autonomous first-order differential equations and are continuous for all (x, y) such that $\phi(x, y)>0$ and $\psi(x, y)<0$, and $x(t)$ and $y(t)$ are bounded, so as $t \rightarrow \infty, x^{\prime}(t) \rightarrow 0$ and $y^{\prime}(t) \rightarrow 0$. Note that $x^{\prime}(t)=0$ and $y^{\prime}(t)=0$
if and only if $x(t)=1$ and $y(t)=0$. So $\phi(x(t), y(t)) \rightarrow 0$ and $\psi(x(t), y(t)) \rightarrow 0$ if and only if $x(t) \rightarrow 1$ and $y(t) \rightarrow 0$.

Define $\mathcal{D} \subset(0,1)^{2}$ and $\mathcal{D}_{0} \subset(0,1)^{2}$ as

$$
\begin{gathered}
\mathcal{D}:=\{(x, y):(\mathrm{OA} .2),(\mathrm{OA} .3) \text { and (OA.4) hold }\}, \\
\mathcal{D}_{0}:=\mathcal{D} \cap\{(x, y): x>y \text { and } V(x, y)=c\}
\end{gathered}
$$

In words, if a solution $(x(t), y(t))$ to the differential system (9) is an equilibrium, then it must be that $(x(t), y(t)) \in \mathcal{D}$ for all $t \geq 0$ with initial values $(x(0), y(0)) \in \mathcal{D}_{0}$.

It is helpful to consider the (x, y)-plane and the differential equation

$$
\begin{equation*}
y^{\prime}(x)=\Upsilon(x, y):=\frac{\psi(x, y)}{\phi(x, y)}, \forall(x, y) \in \mathcal{D} \tag{OA.5}
\end{equation*}
$$

By definition, $\Upsilon(x, y)$ is continuous in (x, y) for all $(x, y) \in \mathcal{D}$. An equilibrium is a solution $y(x)$ to the differential equation (OA.5) in \mathcal{D} with $y(x)<x$ that goes through a point in \mathcal{D}_{0} and converges to 0 as x goes to 1 . Showing an equilibrium exists and is unique is equivalent to showing such solution exists and is unique. In what follows, Lemma OA. 2 shows there exists a trajectory in \mathcal{D} that converges to 0 as x goes to 1 . Under parametric restriction (OA.12), this trajectory is unique. Lemma OA. 3 shows this (unique) trajectory goes through one and only one point in \mathcal{D}_{0} for $y(x)<x$. Thus the equilibrium is unique.

Figure OA. 1 illustrates the unique equilibrium trajectory (red arrowed curve) which goes through exactly one point in \mathcal{D}_{0} and converges to the point $(1,0)$. All other trajectories (black arrowed curves) will diverge to the boundaries of \mathcal{D}. Figure OA. 1 also displays annotations that facilitate the rest of the proof.

Lemma OA.2. For any feasible parameters, there exists a solution $y(x)$ to the differential equation (OA.5) in \mathcal{D} with $y(x) \rightarrow 0$ as $x \rightarrow 1$.

Proof. Consider the boundaries of \mathcal{D}. For any fixed $x \in(0,1)$, let $\beta_{F}(x)$ be such that

$$
\begin{equation*}
\frac{\rho_{0}}{1-\rho_{0}} \frac{f^{1}\left(\beta_{F}(x)\right)}{f^{0}\left(\beta_{F}(x)\right)} \frac{1-F^{1}(x)}{1-F^{0}(x)}=\frac{L+c}{H-c}, \tag{OA.6}
\end{equation*}
$$

$\beta_{f}(x)$ be such that

$$
\begin{equation*}
\frac{\rho_{0}}{1-\rho_{0}} \frac{f^{1}\left(\beta_{f}(x)\right)}{f^{0}\left(\beta_{f}(x)\right)} \frac{f^{1}(x)}{f^{0}(x)}=\frac{L}{H}, \tag{OA.7}
\end{equation*}
$$

Figure OA.1: Equilibrium trajectory (red arrowed curve) and sample trajectories (nonequilibrium, black arrowed curves) to the differential system (9) for $\rho_{0}=1 / 2, H=$ $L=1, r=1 / 5, c=0.38, \eta=1 / 20$ and posterior beliefs distributed according to $\operatorname{Beta}(1+\theta, 1+(1-\theta))$.
and $\alpha(x)$ be such that

$$
\begin{equation*}
\frac{\rho_{0}}{1-\rho_{0}} \frac{f^{1}(\alpha(x))}{f^{0}(\alpha(x))} \frac{f^{1}(x)}{f^{0}(x)}=\frac{L+c}{H-c} . \tag{OA.8}
\end{equation*}
$$

Finally, define

$$
\beta(x):=\max _{x \in(0,1)}\left\{\beta_{F}(x), \beta_{f}(x)\right\} .
$$

By IHRP, $\beta_{f}(x)$ and $\beta_{F}(x)$ intersect at most once for $x \in(0,1)$.
Claim OA.1. (i) \mathcal{D} is non-empty. (ii) $(1,0) \in \operatorname{cl}(\mathcal{D})$ and $(0,1) \in \operatorname{cl}(\mathcal{D})$.
Proof. (i) Fix $x \in(0,1)$. By MLRP, the left-hand side of (OA.6) evaluated at any $\left(x^{\prime}, y^{\prime}\right)>\left(x, \beta_{F}(x)\right)$ is strictly higher than $(L+c) /(H-c)$, the left-hand side of (OA.7) evaluated at any $\left(x^{\prime}, y^{\prime}\right)>\left(x, \beta_{f}(x)\right)$ is strictly higher than L / H, and the left-hand side of (OA.8) evaluated at any $\left(x^{\prime}, y^{\prime}\right)<(x, \alpha(x))$ is strictly lower than $(L+c) /(H-c)$. $\alpha(x)>\beta(x)$ for all $x \in(0,1)$. So \mathcal{D} is non-empty.
(ii) Fix $x \in(0,1)$. Consider (OA.6). Take the limit of both sides as $x \rightarrow 1$. The right-hand side is constant at $(L+c) /(H-c)$. On the left-hand side, because $\lim _{x \rightarrow 1} \frac{1-F^{1}(x)}{1-F^{0}(x)}=\lim _{x \rightarrow 1} \frac{f^{1}(x)}{f^{0}(x)}=\infty$, it must be $f^{1}\left(\beta_{F}(x)\right) / f^{0}\left(\beta_{F}(x)\right) \rightarrow 0$, which means $\beta_{F}(x) \rightarrow 0$. The same argument applies for equations (OA.7) and (OA.8). This implies $(1,0) \in \operatorname{cl}(\mathcal{D})$. An analogous argument shows $(0,1) \in \operatorname{cl}(\mathcal{D})$.

By definition, for all $(x, y) \in \mathcal{D}, \psi(x, y)<0$ and $\phi(x, y)>0$, so $\Upsilon(x, y)<0$. Define $\mathcal{D}_{u} \in(0,1)^{2}$ (the subscript u stands for "upper") as

$$
\mathcal{D}_{u}:=\left\{(x, y): \frac{\rho_{0}}{1-\rho_{0}} \frac{f^{1}(y)}{f^{0}(y)} \frac{f^{1}(x)}{f^{0}(x)} \geq \frac{L+c}{H-c}\right\} .
$$

In words, \mathcal{D}_{u} is the set of points in the (x, y)-plane that are equal to or above $\alpha(x)$. By definition and the continuity of the distribution functions, $\mathcal{D} \cup \mathcal{D}_{u}$ is connected. For any fixed $x \in(0,1)$, as $y \rightarrow \alpha(x), \Upsilon(x, y) \rightarrow 0$. Let $\Upsilon(x, y)=0$ for all $(x, y) \in \mathcal{D}_{u}$. Then $\Upsilon(x, y)$ is continuous in (x, y) for all $(x, y) \in \mathcal{D} \cup \mathcal{D}_{u}$. Apply the implicit function theorem to (OA.8), MLRP implies for all feasible parameters and $x \in(0,1)$,

$$
\alpha^{\prime}(x)<0=\Upsilon(x, \alpha(x))
$$

This means $\alpha(x)$ is a strong lower fence (or lower solution, see Hubbard and West, 1991, Section 1.3, or Teschl, 2012, Section 1.5) for the differential equation

$$
y^{\prime}(x)=\Upsilon(x, y)= \begin{cases}\psi(x, y) / \phi(x, y) & (x, y) \in \mathcal{D} \tag{OA.9}\\ 0 & (x, y) \in \mathcal{D}_{u}\end{cases}
$$

Consider an ε-variation of $\beta_{F}(x)$ and $\beta_{f}(x)$. Let $\beta_{F, \varepsilon}(x)$ be such that

$$
\begin{equation*}
\frac{\rho_{0}}{1-\rho_{0}} \frac{f^{1}\left(\beta_{F, \varepsilon}(x)\right)}{f^{0}\left(\beta_{F, \varepsilon}(x)\right)} \frac{1-F^{1}(x)}{1-F^{0}(x)}=\frac{L+c}{H-c}+\varepsilon \tag{OA.10}
\end{equation*}
$$

and $\beta_{f, \varepsilon}(x)$ be such that

$$
\begin{equation*}
\frac{\rho_{0}}{1-\rho_{0}} \frac{f^{1}\left(\beta_{f, \varepsilon}(x)\right)}{f^{0}\left(\beta_{f, \varepsilon}(x)\right)} \frac{f^{1}(x)}{f^{0}(x)}=\frac{L}{H}+\varepsilon . \tag{OA.11}
\end{equation*}
$$

Define

$$
\begin{gathered}
\beta_{\varepsilon}(x):=\max _{x \in(0,1)}\left\{\beta_{F, \varepsilon}(x), \beta_{f, \varepsilon}(x)\right\}, \\
\mathcal{D}_{\varepsilon}:=\left\{(x, y): x \in(0,1) \text { and } \beta_{\varepsilon}(x) \leq y<\alpha(x)\right\} .
\end{gathered}
$$

By MLRP, for all $x \in(0,1), \beta_{F, \varepsilon}(x)<\alpha(x)$. For all $\varepsilon<(L+c) /(H-c)-L / H$, $\beta_{f, \varepsilon}(x)<\alpha(x)$. By the same argument as Claim OA.1, $\mathcal{D}_{\varepsilon}$ is non-empty, and the points $(1,0)$ and $(0,1)$ are in the closure of $\mathcal{D}_{\varepsilon}$. Moreover, $\mathcal{D}_{\varepsilon} \cup \mathcal{D}_{u}$ is connected and $\Upsilon(x, y)$ is continuous in (x, y) for all $(x, y) \in \mathcal{D}_{\varepsilon} \cup \mathcal{D}_{u}$.

Apply the implicit function theorem to (OA.10) and (OA.11), MLRP implies that for all feasible parameters and any $\varepsilon>0, \beta_{F, \varepsilon}^{\prime}(x)$ and $\beta_{f, \varepsilon}^{\prime}(x)$ are both finite and negative. Therefore $\beta_{\varepsilon}^{\prime}(x)>-\infty$ for all $x \in(0,1)$.
Claim OA.2. There exists $\hat{\varepsilon}>0$ such that $\Upsilon\left(x, \beta_{\hat{\varepsilon}}(x)\right)<\beta_{\hat{\varepsilon}}^{\prime}(x)$ for all x.
Proof. For all $x \in(0,1)$, by definition, as $\varepsilon \rightarrow 0, \beta_{\varepsilon}(x) \rightarrow \beta(x)$, which implies $\Upsilon\left(x, \beta_{\varepsilon}(x)\right) \rightarrow-\infty$. So for any x, there exists $\varepsilon(x)>0(\varepsilon$ might depend on $x)$ such that for all $\varepsilon<\varepsilon(x), \Upsilon\left(x, \beta_{\varepsilon}(x)\right)<\beta_{\varepsilon}^{\prime}(x)$. Let $\hat{\varepsilon}:=\inf _{x \in(0,1)} \varepsilon(x)$. It remains to show $\hat{\varepsilon}>0$. Suppose $\hat{\varepsilon}=0$. Then there exists a sequence ε_{n} with $\varepsilon_{n} \rightarrow 0$ such that for each ε_{n} there exists x_{n} such that $\Upsilon\left(x_{n}, \beta_{\varepsilon_{n}}\left(x_{n}\right)\right) \geq \beta^{\prime}\left(x_{n}\right)$. This is a contradiction because for all $x_{n}, \beta^{\prime}\left(x_{n}\right)>-\infty$ but as $\varepsilon_{n} \rightarrow 0, \Upsilon\left(x_{n}, \beta_{\varepsilon_{n}}\left(x_{n}\right)\right) \rightarrow-\infty$.

This means $\beta_{\varepsilon}(x)$ is a strong upper fence (or upper solution) for the differential equation (OA.9). Therefore, in $\mathcal{D}_{\varepsilon} \cup \mathcal{D}_{u}$, there exists a solution $y(x)$ to the differential equation (OA.5) with $\beta_{\varepsilon}(x) \leq y(x) \leq \alpha(x)$ for all $x \in(0,1)$ (see Hubbard and West, 1991, Theorem 1.4.4, or Teschl, 2012, Lemma 1.2).

The above argument establishes there exists a solution in $\mathcal{D}_{\varepsilon} \cup \mathcal{D}_{u}$. It remains to show that the solution is within $\mathcal{D}_{\varepsilon}$ (and thus within \mathcal{D}), not in \mathcal{D}_{u}. This boils down to showing that solutions in \mathcal{D}_{u} do not converge to 0 as $x \rightarrow 1$. This follows from the definition that $y^{\prime}(x)=0$ for all $(x, y) \in \mathcal{D}_{u}$. So for any $(x, y(x)) \in \mathcal{D}_{u}$ that solves the differential equation (OA.9), $y(x)>0$ for all x.

Uniqueness

Assumption. Assume the following condition holds:

$$
\begin{equation*}
\forall(x, y) \in \mathcal{D}, \quad \partial \Upsilon(x, y) / \partial y \geq 0 \tag{OA.12}
\end{equation*}
$$

The uniqueness of a global condition can be established if the primitives satisfy the above condition. It can be numerically verified that (OA.12) is satisfied if f^{θ} is induced by signals distributed according to the Beta distributions or the Normal distributions. Moreover, by definition, as $x \rightarrow 1, \alpha(x) \rightarrow 0$ and $\beta_{\varepsilon}(x) \rightarrow 0$, so

$$
\begin{equation*}
\lim _{x \rightarrow 1}\left|\alpha(x)-\beta_{\varepsilon}(x)\right|=0 \tag{OA.13}
\end{equation*}
$$

Conditions (OA.12) and (OA.13) imply the solution is unique in $\mathcal{D}_{\varepsilon}$ (see Hubbard and West, 1991, Theorem 1.4.5, or Teschl, 2012, Section 1.5).

The above argument establishes the unique solution is in $\mathcal{D}_{\varepsilon}$. It remains to show this solution is unique in \mathcal{D}. Because $\mathcal{D}=\mathcal{D}_{\varepsilon} \cup\{(x, y): x \in(0,1)$ and $\beta(x)<y<$ $\left.\beta_{\varepsilon}(x)\right\}$, it boils down to showing there does not exist a solution in the set $\{(x, y)$: $x \in(0,1)$ and $\left.\beta(x)<y<\beta_{\varepsilon}(x)\right\}$. For all $y(x)$ such that $\beta(x)<y(x)<\beta_{\varepsilon}(x)$, $y^{\prime}(x) \rightarrow-\infty$, which implies for all $x \in(0,1), y(x) \rightarrow \beta(x)>0$.

Denote this unique solution by $\hat{y}(x)$. I prove there exists a unique set of initial values satisfying $\hat{y}(x)$. This is summarized in the following lemma.

Lemma OA.3. There exists a unique $\left(x_{0}, y_{0}\right) \in \mathcal{D}_{0}$ such that $y_{0}=\hat{y}\left(x_{0}\right)$.
Proof. To simplify notation, define

$$
\ell(x, y):=\frac{\rho_{0}}{1-\rho_{0}} \frac{f^{1}(y)}{f^{0}(y)} \frac{f^{1}(x)}{f^{0}(x)}
$$

Recall that \mathcal{D}_{0} is the set of points $(x, y) \in \mathcal{D}$ that satisfies the equation $W_{0}(x, y)=c$. Solve $W_{0}(x, y)=c$ for y in terms of x and denote the solution by $y_{W_{0}}(x)$. By Claim 6 (iii) and (iv), $y_{W_{0}}(x)$ is increasing and continuous in x for all x such that $y_{W_{0}}(x)<x$.

By a change of variable, Lemma OA. 2 shows $\hat{y}(x)$ also converges to 1 as $x \rightarrow 0$. So $\hat{y}(x)$ is a strictly decreasing function that converges to 1 as $x \rightarrow 0$ and converges to 0 as $x \rightarrow 1$, and satisfies $\ell(x, \hat{y}(x)) \in(L / H,(L+c) /(H-c))$ for all $x \in(0,1)$. So points in \mathcal{D}_{0} constitute a strictly increasing and continuous function that starts at a point below $\hat{y}(x)$, and ends at a point above $\hat{y}(x)$. The result follows.

References

Hopkins, Ed and Tatiana Kornienko (2007) "Cross and Double Cross: Comparative Statics in First Price and All Pay Auctions," The B.E. Journal of Theoretical Economics, 7.
Hubbard, John H. and Beverly H. West (1991) Differential Equations: A Dynamical Systems Approach, 5 of Texts in Applied Mathematics, New York, NY: Springer New York.
Teschl, Gerald (2012) Ordinary Differential Equations and Dynamical Systems, Providence, R.I: American Mathematical Society.

[^0]: *Department of Economics, University of Pittsburgh, beixi.zhou@pitt.edu.

