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OA.1 Omitted Proofs for Section 3
OA.1.1 Proof of Lemma 17

Recall that by definition,
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which is positive because as is shown above, for all s < w*,
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The same argument shows 90, /p > 0.
Second, dU /dp > 0: by (25),
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Because U(w*, p) = (1= p)V (w*, p) + pUs (w*, p) > V(w*, p), s0 Us(w*, p) >V (w*, p).
Therefore, dU /dp > 0.
Next, dV /ow* < 0:
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To show this is negative, it suffices to show dq(s, w*, p)/0w* < 0 for all s < w*. This

partial derivative is given by
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After some rearranging,
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The result follows. Note that dq(s,w*, p)/dw* < 0 also implies dU (w*, p) /dw* < 0.
Finally, 9U /ow* < 0: by (25),
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because, as is shown above, OV (w*, p)/Ow* < 0 and U (w*, p)/dw* < 0.

OA.1.2 Proof of Claim 3
by definition,
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where (8 — Ae” M) /(B —X) > 1.
For the first inequality, p/(t) — r(1 4 p(t)) < 0, OV /dp > 0, and AU, /dp > 0



implies

So it suffices to show
r(1+ p(t)) ((1 - p(t))a—p(w*(t),p(t)) + p(t)a—p(w*(t),p(t))> <rU(w*(t), p(t))-

I show the above inequality holds for all p and all w*. Plug in the expression for

dV /dp and dU, /dp,

8 — Ae—w—»w*) i

(1+ p(t))g—p(w*(t), p(t)) ((1 = p(t) + p(t) A < U(w*(t), p(t))-

After some rearranging, the inequality becomes
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The left-hand side is independent of 7. For the right-hand side, note that U (w*, p)
also depends on r and e U(w*, p) = (1 — p)e™ "V (w*, p) + pe™ Uy (w*, p), where
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which is increasing in r. So it suffices to show this inequality holds when the right-
hand side is evaluated at » = 0. That is,
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Evaluating at w* = 0, the left-hand side is equal to the right-hand side and is equal
to 1+ p. So to prove this inequality, it suffices to show the left-hand side is decreasing



in w* and the right-hand side is increasing in w*.
Take the derivative of the right-hand side with respect to w*, \p (e)‘w* + A=A p) >
0. Take the derivative of the left-hand side with respect to w*,
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Show this is negative is equivalent to showing the second term is negative. After some

simplifying, the goal is to show

)\(1 —eﬁ“’*) —5(1 —6)‘1”*)
B—A

< 0.

Note that this term is equal to 0 at w* = 0. Its derivative with respect to w* is
B (er” —eP") /(B — X) < 0. So the inequality holds.
The second inequality follows a similar argument. Analogously, p/(t)—r(1+p(t)) <
0 and AV /dp > 0 implies
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So it suffices to show

(1+ p(t))%—Z(w*(t), p(t)) < V(w" (1), p(t)).

I show the above inequality holds for all p and all w*. Plug in the expression for
AV (w*, p)/8p using (OA.1), the inequality becomes
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Note that the left-hand side is independent of r and the right-hand side is increasing
in 7 (shown in the first part of the proof). So it suffices to show this inequality holds
when the right-hand side is evaluated at » = 0. That is,

L+p< (14 p) (14 (™ =1)p).

The right-hand side increases in w* and equals 1+ p at w* = 0. The inequality holds.
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