Online Appendix to "Optimal Disclosure Windows"

Beixi Zhou*

September 28, 2023

OA. 1 Omitted Proofs for Section 3

OA.1.1 Proof of Lemma 17
Recall that by definition,

$$
q\left(w^{*}, w^{*}, \rho\right)=\frac{\rho}{\rho+e^{-\lambda w^{*}}(1-\rho)}
$$

and

$$
\frac{\partial}{\partial \rho} q\left(w, w^{*}, \rho\right)=\frac{e^{-\lambda w^{*}}}{\left(\rho+e^{-\lambda w^{*}}(1-\rho)\right)^{2}} e^{-(r+\lambda)\left(w^{*}-w\right)}>0
$$

First, $\partial \hat{V} / \partial \rho>0$:

$$
\frac{\partial}{\partial \rho} \hat{V}\left(w^{*}, \rho\right)=e^{-r w^{*}} e^{-\lambda w^{*}} e^{-\beta w^{*}} \frac{\partial}{\partial \rho} q\left(w^{*}, w^{*}, \rho\right)+\int_{0}^{w^{*}} e^{-r s} e^{-\lambda s} \beta e^{-\beta s} \frac{\partial}{\partial \rho} q\left(s, w^{*}, \rho\right) \mathrm{d} s
$$

which is positive because as is shown above, for all $s \leq w^{*}$,

$$
\frac{\partial}{\partial \rho} q\left(s, w^{*}, \rho\right)>0
$$

The same argument shows $\partial \hat{U}_{1} / \partial \rho>0$.
Second, $\partial \hat{U} / \partial \rho>0$: by (25),

$$
\frac{\partial}{\partial \rho} \hat{U}\left(w^{*}, \rho\right)=\hat{U}_{1}\left(w^{*}, \rho\right)-\hat{V}\left(w^{*}, \rho\right)+(1-\rho) \frac{\partial}{\partial \rho} \hat{V}\left(w^{*}, \rho\right)+\rho \frac{\partial}{\partial \rho} \hat{U}_{1}\left(w^{*}, \rho\right)
$$

[^0]Because $\hat{U}\left(w^{*}, \rho\right)=(1-\rho) \hat{V}\left(w^{*}, \rho\right)+\rho \hat{U}_{1}\left(w^{*}, \rho\right)>\hat{V}\left(w^{*}, \rho\right)$, so $\hat{U}_{1}\left(w^{*}, \rho\right)>\hat{V}\left(w^{*}, \rho\right)$. Therefore, $\partial \hat{U} / \partial \rho>0$.

Next, $\partial \hat{V} / \partial w^{*}<0$:

$$
\begin{aligned}
\frac{\partial}{\partial w^{*}} \hat{V}\left(w^{*}, \rho\right)= & e^{-r w^{*}} e^{-\lambda w^{*}} e^{-\beta w^{*}}\left(\frac{\partial}{\partial w^{*}} q\left(w^{*}, w^{*}, \rho\right)-r \kappa-(r+\lambda) q\left(w^{*}, w^{*}, \rho\right)\right) \\
& +\int_{0}^{w^{*}} e^{-r s} e^{-\lambda s} \beta e^{-\beta s} \frac{\partial}{\partial w^{*}} q\left(s, w^{*}, \rho\right) \mathrm{d} s .
\end{aligned}
$$

To show this is negative, it suffices to show $\partial q\left(s, w^{*}, \rho\right) / \partial w^{*}<0$ for all $s \leq w^{*}$. This partial derivative is given by

$$
\begin{aligned}
\frac{\partial}{\partial w^{*}} q\left(s, w^{*}, \rho\right)= & -(r+\lambda) e^{-(r+\lambda)\left(w^{*}-s\right)}\left(\frac{\rho}{\rho+e^{-\lambda w^{*}}(1-\rho)}+\frac{r \kappa}{r+\lambda}\right) \\
& +e^{-(r+\lambda)\left(w^{*}-s\right)} \lambda\left(1-q\left(w^{*}, w^{*}, \rho\right)\right) q\left(w^{*}, w^{*}, \rho\right)
\end{aligned}
$$

After some rearranging,

$$
\frac{\partial}{\partial w^{*}} q\left(s, w^{*}, \rho\right)=e^{-(r+\lambda)\left(w^{*}-s\right)}\left(-\lambda q\left(w^{*}, w^{*}, \rho\right)^{2}-r q\left(w^{*}, w^{*}, \rho\right)-r \kappa\right)<0 .
$$

The result follows. Note that $\partial q\left(s, w^{*}, \rho\right) / \partial w^{*}<0$ also implies $\partial \hat{U}_{1}\left(w^{*}, \rho\right) / \partial w^{*}<0$.
Finally, $\partial \hat{U} / \partial w^{*}<0$: by (25),

$$
\frac{\partial}{\partial w^{*}} \hat{U}\left(w^{*}, \rho\right)=(1-\rho) \frac{\partial}{\partial w^{*}} \hat{V}\left(w^{*}, \rho\right)+\rho \frac{\partial}{\partial w^{*}} \hat{U}_{1}\left(w^{*}, \rho\right)<0
$$

because, as is shown above, $\partial \hat{V}\left(w^{*}, \rho\right) / \partial w^{*}<0$ and $\partial \hat{U}_{1}\left(w^{*}, \rho\right) / \partial w^{*}<0$.

OA.1.2 Proof of Claim 3

by definition,

$$
\begin{equation*}
\frac{\partial \hat{V}}{\partial \rho}=\frac{e^{-r w^{*}}}{\left(1+\left(e^{\lambda w^{*}}-1\right) \rho\right)^{2}} \text { and } \frac{\partial \hat{U}_{1}}{\partial \rho}=\frac{\beta-\lambda e^{-(\beta-\lambda) w^{*}}}{\beta-\lambda} \frac{\partial \hat{V}}{\partial \rho} \tag{OA.1}
\end{equation*}
$$

where $\left(\beta-\lambda e^{-(\beta-\lambda) w^{*}}\right) /(\beta-\lambda)>1$.
For the first inequality, $\rho^{\prime}(t)-r(1+\rho(t)) \leq 0, \partial \hat{V} / \partial \rho>0$, and $\partial \hat{U}_{1} / \partial \rho>0$
implies

$$
\begin{aligned}
& \rho^{\prime}(t)\left((1-\rho(t)) \frac{\partial \hat{V}}{\partial \rho}\left(w^{*}(t), \rho(t)\right)+\rho(t) \frac{\partial \hat{U}_{1}}{\partial \rho}\left(w^{*}(t), \rho(t)\right)\right) \\
& \leq r(1+\rho(t))\left((1-\rho(t)) \frac{\partial \hat{V}}{\partial \rho}\left(w^{*}(t), \rho(t)\right)+\rho(t) \frac{\partial \hat{U}_{1}}{\partial \rho}\left(w^{*}(t), \rho(t)\right)\right)
\end{aligned}
$$

So it suffices to show

$$
r(1+\rho(t))\left((1-\rho(t)) \frac{\partial \hat{V}}{\partial \rho}\left(w^{*}(t), \rho(t)\right)+\rho(t) \frac{\partial \hat{U}_{1}}{\partial \rho}\left(w^{*}(t), \rho(t)\right)\right)<r \hat{U}\left(w^{*}(t), \rho(t)\right)
$$

I show the above inequality holds for all ρ and all w^{*}. Plug in the expression for $\partial \hat{V} / \partial \rho$ and $\partial \hat{U}_{1} / \partial \rho$,

$$
(1+\rho(t)) \frac{\partial \hat{V}}{\partial \rho}\left(w^{*}(t), \rho(t)\right)\left((1-\rho(t))+\rho(t) \frac{\beta-\lambda e^{-(\beta-\lambda) w^{*}}}{\beta-\lambda}\right)<\hat{U}\left(w^{*}(t), \rho(t)\right) .
$$

After some rearranging, the inequality becomes

$$
\frac{1+\rho}{\left(1+\left(e^{\lambda w^{*}}-1\right) \rho\right)^{2}}\left((1-\rho)+\rho \frac{\beta-\lambda e^{-(\beta-\lambda) w^{*}}}{\beta-\lambda}\right)<e^{r w^{*}} \hat{U}\left(w^{*}, \rho\right)
$$

The left-hand side is independent of r. For the right-hand side, note that $\hat{U}\left(w^{*}, \rho\right)$ also depends on r and $e^{r w^{*}} \hat{U}\left(w^{*}, \rho\right)=(1-\rho) e^{r w^{*}} \hat{V}\left(w^{*}, \rho\right)+\rho e^{r w^{*}} \hat{U}_{1}\left(w^{*}, \rho\right)$, where

$$
\begin{aligned}
e^{r w^{*}} \hat{V}\left(w^{*}, \rho\right)= & e^{-\lambda w^{*}} e^{-\beta w^{*}}\left(1+q\left(w^{*}, w^{*}, \rho\right)\right) \\
& +\int_{0}^{w^{*}} e^{r\left(w^{*}-s\right)} \lambda e^{-\lambda s} e^{-\beta s} \mathrm{~d} s+\int_{0}^{w^{*}} e^{r\left(w^{*}-s\right)} e^{-\lambda s} \beta e^{-\beta s}\left(1+q\left(s, w^{*}, \rho\right)\right) \mathrm{d} s
\end{aligned}
$$

which is increasing in r. So it suffices to show this inequality holds when the righthand side is evaluated at $r=0$. That is,

$$
\frac{(1+\rho)\left((1-\rho)+\rho \frac{\beta-\lambda e^{-(\beta-\lambda) w^{*}}}{\beta-\lambda}\right)}{\left(1+\left(e^{\lambda w^{*}}-1\right) \rho\right)^{2}}<\frac{\beta+\beta e^{\lambda w^{*}} \rho-\lambda\left(1+\rho\left(e^{\lambda w^{*}}-\rho+e^{(\lambda-\beta) w^{*}} \rho\right)\right)}{(\beta-\lambda)\left(1+\left(e^{\lambda w^{*}}-1\right) \rho\right)} .
$$

Evaluating at $w^{*}=0$, the left-hand side is equal to the right-hand side and is equal to $1+\rho$. So to prove this inequality, it suffices to show the left-hand side is decreasing
in w^{*} and the right-hand side is increasing in w^{*}.
Take the derivative of the right-hand side with respect to $w^{*}, \lambda \rho\left(e^{\lambda w^{*}}+e^{(\lambda-\beta) w^{*}} \rho\right)>$ 0 . Take the derivative of the left-hand side with respect to w^{*},

$$
\frac{e^{(\lambda-\beta) w^{*}} \lambda \rho(1+\rho)}{\left(1+\left(e^{\lambda w^{*}}-1\right) \rho\right)^{2}} \frac{\beta-\lambda-e^{\beta w^{*}}(\beta+\lambda(\rho-1))-\beta \rho+\beta e^{\lambda w^{*}} \rho+\lambda \rho}{\beta-\lambda} .
$$

Show this is negative is equivalent to showing the second term is negative. After some simplifying, the goal is to show

$$
\frac{\lambda\left(1-e^{\beta w^{*}}\right)-\beta\left(1-e^{\lambda w^{*}}\right)}{\beta-\lambda}<0 .
$$

Note that this term is equal to 0 at $w^{*}=0$. Its derivative with respect to w^{*} is $\beta \lambda\left(e^{\lambda w^{*}}-e^{\beta w^{*}}\right) /(\beta-\lambda)<0$. So the inequality holds.

The second inequality follows a similar argument. Analogously, $\rho^{\prime}(t)-r(1+\rho(t)) \leq$ 0 and $\partial \hat{V} / \partial \rho>0$ implies

$$
\rho^{\prime}(t) \frac{\partial \hat{V}}{\partial \rho}\left(w^{*}(t), \rho(t)\right) \leq r(1+\rho(t)) \frac{\partial \hat{V}}{\partial \rho}\left(w^{*}(t), \rho(t)\right)
$$

So it suffices to show

$$
(1+\rho(t)) \frac{\partial \hat{V}}{\partial \rho}\left(w^{*}(t), \rho(t)\right)<\hat{V}\left(w^{*}(t), \rho(t)\right)
$$

I show the above inequality holds for all ρ and all w^{*}. Plug in the expression for $\partial \hat{V}\left(w^{*}, \rho\right) / \partial \rho$ using (OA.1), the inequality becomes

$$
\frac{1+\rho}{\left(1+\left(e^{\lambda w^{*}}-1\right) \rho\right)^{2}}<e^{r w^{*}} \hat{V}\left(w^{*}, \rho\right)
$$

Note that the left-hand side is independent of r and the right-hand side is increasing in r (shown in the first part of the proof). So it suffices to show this inequality holds when the right-hand side is evaluated at $r=0$. That is,

$$
1+\rho<\left(1+e^{\lambda w^{*}} \rho\right)\left(1+\left(e^{\lambda w^{*}}-1\right) \rho\right)
$$

The right-hand side increases in w^{*} and equals $1+\rho$ at $w^{*}=0$. The inequality holds.

[^0]: *Department of Economics, University of Pittsburgh, beixi.zhou@pitt.edu.

