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Abstract

I study a dynamic disclosure game in which an agent controls the time win-
dow over which information flows to the decision maker, but does not control the
content of that information. In equilibrium, the agent has incentives to delay
the start of disclosure to continue to learn privately for some time. This de-
lay exacerbates the information asymmetry between the agent and the decision
maker as the agent is learning while the decision maker is not. This information
asymmetry is then (partially) resolved during the disclosure window. The length
of the disclosure window is determined by the degree of information asymmetry
at the beginning of the window, with longer windows associated with greater
information asymmetry.
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1 Introduction

I study a dynamic model of verifiable information disclosure. I consider a disclosure
environment in which an agent, who observes a flow of information over time, controls
the window of time over which this information is disclosed to a decision maker, but
does not control the content of the information being disclosed. The agent chooses
when to open this disclosure window and how long to keep it open, taking into account
that while disclosure is in progress, he cannot prevent unfavorable information from
coming to light.

This disclosure environment is prevalent in many corporate and financial settings.
For example, consider a pharmaceutical company (the agent) seeking drug approvals
from the Food and Drug Administration (FDA, the decision maker). The pharma-
ceutical company first files for patents to establish proprietary, and privately gathers
information about the drug through discovery and preclinical research. It then regis-
ters the drug with the FDA to start clinical trials. At this point, the company must
report all results from clinical trials. The company then chooses a time to conclude
clinical trials, after which it submits a drug application to the FDA, who then decides
the extent (treatment conditions, age groups, etc) to which they approve the drug.1

Similarly, consider a private company (the agent) trying to raise capital through an
Initial Public Offering (IPO). The company is initially privately owned and learns
about its potential market value through operations. It announces an IPO when it
decides to go public and undergoes due diligence, where its financials and performance
are investigated. The company then chooses an initial offering date, at which time
the market (the decision maker) evaluates and prices the company.

This disclosure environment prevents the agent from cherry-picking which infor-
mation to disclose. Instead, the agent (partially) controls the information disclosure
by choosing when to open and close the disclosure window, based on what he knows
and what has been revealed. As the examples above illustrate, information trans-
parency during a disclosure window is sometimes a legal or institutional requirement,
and the timing of disclosure is a crucial strategic component that affects the final out-
come. The literature on voluntary disclosure has largely focused on “what to disclose,”
while the study of “when to disclose” has received relatively little attention.

1Details about the FDA drug approval process can be found at https://www.fda.gov/patients/
learn-about-drug-and-device-approvals/drug-development-process.
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My paper contributes to this literature by studying both when and how long to
disclose. I explore the strategic timing of both the beginning and the end of disclosing
an information process, while taking into account that all arriving information during
this window must be disclosed in full. I characterize the agent’s optimal time to start
disclosure and the optimal duration to keep it open. I derive a key insight: delays
in the start of disclosure lead to longer disclosure windows. This insight highlights
the tradeoffs and incentives at play: the time until disclosure starts endogenously
creates information asymmetry between the agent and the decision maker. This
information asymmetry is (partially) eliminated through disclosure, and the degree
of the information asymmetry determines the duration of the disclosure window.

Specifically, in my model, an agent and a decision maker engage in a dynamic
disclosure game that takes place in continuous time with an infinite horizon. The
underlying state of the world is either good or bad, initially unknown to both the
agent and the decision maker. Over time, the agent privately receives a flow of
information about the state. This information takes the form of signals that arrive at
random times and deliver conclusive news that the state is bad. The agent chooses
a time to start disclosing this information process to the decision maker. While the
information process unfolds, he chooses a time to stop disclosing. To capture the
idea that the beginning and the end of a disclosure process are often restricted by
exogenous factors, such as financing, I assume that the agent can only start disclosing
at any time after getting an opportunity to do so, and disclosure might exogenously
terminate at any time after it starts. The decision maker observes the times at which
disclosure begins and ends and the signal arrivals (or lack thereof) in between, but
not the underlying reasons for why disclosure doesn’t begin earlier or why it ends.
Given this information, the decision maker takes an action at the end of disclosure.
While the decision maker prefers an action that matches the state, the agent prefers
a higher action regardless of the state.

This setup poses some analytical challenges. First, this game is effectively a
dynamic signaling game with an agent whose (private) information changes over time.
Second, the agent choosing both when to start and when to stop disclosing results in
two stopping problems that are intertwined. Third, in addition to private learning,
the agent and the decision maker engage in common learning during the disclosure
window. These issues lead to an obscured inference problem for the decision maker.
The standard exponential bandit framework with conclusive bad news helps keep the

3



problem tractable: at each point in time, the agent can be either of only two types:
informed if he has observed a conclusive bad signal, or uninformed if he has not.
Although the agent’s belief still changes over time if he is uninformed, the agent’s
type can only change from being uninformed to informed. Together with the fact that
learning is common knowledge, the decision maker knows the agent’s belief evolution
at each point in time.2

The equilibrium strategies are as follows. The decision maker takes an action
that is equal to her posterior belief that the state is good at the time disclosure
stops. If the agent is patient, then at the beginning of the game, there exists a fixed
period of time where both types of agent delay the start of disclosure in order to
privately learn about the state. After having done so, the agent starts disclosing as
soon as he gets an opportunity. If the agent is impatient, he starts disclosing as soon
as he gets an opportunity right from the beginning of the game. When disclosure
starts, the uninformed agent is more optimistic than the decision maker, while the
informed agent is more pessimistic. Therefore, the uninformed agent has stronger
incentives to keep disclosure open and let information flow to the decision maker.
In particular, along the history in which no signal arrives and disclosure does not
terminate exogenously, the uninformed agent keeps the disclosure window open until
such a time that the decision maker is convinced that the agent is uninformed. While
the uninformed agent strictly prefers to keep the disclosure window open until this
time, the informed agent is indifferent and randomizes over waiting times within this
disclosure window.

The equilibrium captures a novel interaction between the duration of the disclosure
window and the time at which it starts: a later start of disclosure leads to a longer
disclosure window. The duration of the disclosure window is determined by the degree
of information asymmetry between the agent and the decision maker at the beginning
of the disclosure window. At the beginning of the game, the agent and the decision
maker have the same information about the state. Prior to the start of disclosure, the
agent learns about the state privately: he either becomes more optimistic that the
state is good if he remains uninformed, or receives a signal and learns that the state is
bad. Because the two types of agent adopt the same strategy in choosing the starting
time of disclosure, the decision maker cannot infer anything about the state from the

2In other words, “time 0” is common knowledge. The decision maker does not know what the
agent has learned but does know how much the agent has learned.
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agent’s behavior and thus is not learning about the state while the agent continues to
do so. A longer delay in starting disclosure exacerbates this information asymmetry
between the agent and the decision maker. The now-more-optimistic uninformed
agent keeps the disclosure window open longer to reduce the difference between his
belief that the state is good and that of the decision maker.

The tradeoffs the agent faces when choosing the starting and stopping times of
the disclosure window are as follows. At the beginning of the game where the agent
chooses when to start disclosure, the agent faces a tradeoff between (off-path) private
learning and discounting. To see the value of (off-path) private learning, note that if
a signal arrives, the agent observes that signal in private and learn the state without
having to share this information with the decision maker. By delaying the start of
disclosure for a time but allowing it early if bad signal arrives, the agent can induce
misspecified decision maker’s beliefs about the agent’s type. The extent of information
asymmetry becomes positively correlated with the agent’s type, and the agent can
then start starting disclosure at a time that is most beneficial to him. However,
delay is costly because of discounting and because a delay in the start of disclosure
leads to an even longer delay in the continuation game. Thus, the expected time
until the payoff realizes is longer. The agent finds it optimal to delay and exacerbate
information asymmetry only if he is sufficient patient.

In the continuation stopping game while the disclosure window is open, the agent
faces a tradeoff between inducing a more favorable action and higher risks. In the
conclusive bad news environment, “no news is good news”: the decision maker (and
the agent) become more optimistic that the state is good in the absence of signals.
However, a longer disclosure time exposes the agent to higher risks because a signal
is more likely to arrive during a larger time interval. This tradeoff leads to delayed
stopping by the more optimistic (uninformed) agent as he regards the risk lower than
the informed agent does. In equilibrium, the uninformed agent keeps the disclosure
window open in the hope that both the absence of signals for a certain length of
time, and the fact that he is willing to let information flow for that long, convince
the decision maker that he is the uninformed agent; hence the decision maker should
be as optimistic as he is.
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Related Literature

My paper contributes to the literature on voluntary disclosure of verifiable informa-
tion pioneered by Grossman and Hart (1980), Grossman (1981), and Milgrom (1981).
These earlier works establish an unraveling result: under certain conditions, all types
of agents (or senders) disclose their information and the decision maker (receiver)
learns the agent’s type. Subsequent work in this literature has shown that the unrav-
eling result fails if disclosure is costly (see Jovanovic, 1982 and Verrecchia, 1983), or
if the decision maker is uncertain about the agent’s information endowment, that is,
whether the agent has information or not (see Dye, 1985 and Jung and Kwon, 1988).
I adopt the approach proposed in Dye (1985) and Jung and Kwon (1988).

As mentioned, most of the existing literature has focused on studying “what to
disclose” while very few consider “when to disclose.”3 In my paper, the nature of
disclosure is multi-dimensional: not only does the content of the disclosure matter,
the timing of disclosure also plays a key role in determining the equilibrium outcome.
Some examples that explore the timing of disclosure include Acharya, DeMarzo, and
Kremer (2011) and Guttman, Kremer, and Skrzypacz (2014), both of which are dy-
namic versions of Dye (1985).

Specifically, Acharya et al. (2011) consider a model in which the agent gets one
piece of private information and his timing decision to disclose this information is
constrained by the arrival of some public information. Guttman et al. (2014) study
a two-signal, two-period model where the agent chooses which period to disclose and
what signal to disclose. The content of disclosure is completely flexible in Guttman
et al. (2014). If the agent waits until the second period to disclose, there is a chance
that he might get an additional signal in the second period, and can then choose which
signal to disclose. In my model, the agent cannot pick and choose the information
he discloses. In fact, the agent’s inability to control the information content is one of
the key considerations of the agent’s timing decisions.

My model features a disclosure environment different from the papers mentioned
above. When the agent starts disclosure, he does not disclose a piece of evidence that
can be immediately verified. Instead, “disclosure” starts a learning process for the
decision maker. In this regard, the most closely related paper is Gratton, Holden,
and Kolotilin (2018). Over a finite time horizon, a perfectly informed agent receives

3This was pointed out in, for example, Guttman, Kremer, and Skrzypacz (2014) and Hirst,
Koonce, and Venkataraman (2008).

6



a signal process at some random time, and then chooses a time after getting this
information to start disclosing this process to the decision maker. Their model high-
lights a “credibility vs. scrutiny” tradeoff, where the agent signals that his type is
good by starting disclosure early, but is exposed to greater scrutiny. The continuation
game in my model, although studies the agent’s decision to stop disclosure not start,
features a similar tradeoff. There are a few key differences between their model and
mine. I consider a model where the agent is uninformed of the state and has the
same information as the decision maker at the beginning of the game, but gradually
learns about the state over time. Therefore, information asymmetry is endogenously
generated. More importantly, the agent controls not only when to start disclosure,
but also when to stop. I focus on understanding the interactions between these two
timing decisions, and the fact that the agent’s (private) information evolves over time
is an important determinant of this interaction.

On a more technical level, my model results in a dynamic signaling game with
changing types. I consider exponential learning with conclusive news (as studied
in Keller, Rady, and Cripps, 2005 and Keller and Rady, 2015), which keeps the
complications from changing types at bay. Thomas (2019) studies an experimentation
problem with reputation concerns where the effect of changing type is more prominent.
In addition, I adopt an equilibrium refinement that is in the same spirit as the divinity
refinement. Halac and Kremer (2020) also adopts this refinement and applies it to
an infinite horizon continuous-time game.

Structure of the paper

I introduce the model in Section 2. In Section 3, I characterize a class of equilibria of
the game, and discuss the equilibrium properties and dynamics. Next, in Section 4,
I study the duration of the disclosure window, and show that delays in the start
of disclosure leads to longer disclosure windows. Lastly, in Section 5, I present a
benchmark model where the agent knows the state from the start. I then study an
extension that characterizes the decision maker’s optimal duration of a disclosure
window, and show that the decision maker’s incentive to keep the disclosure window
open contrasts the agent’s in the main model, and the decision maker might not
benefit ex post from choosing the duration herself. All proofs are relegated to the
Appendix.
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2 Model

Time is continuous and the horizon is infinite. There are two players, an agent (he)
and a decision maker (she). There is an unknown state of the world θ ∈ {0, 1}, where
θ = 1 indicates the state is good and θ = 0 indicates the state is bad. The players
share a common prior that θ = 1, denoted by µ ∈ (0, 1).

Information

Over time, the agent receives private signals that have Poisson arrival rate λθ, where
λ1 = 0 and λ0 = λ > 0. In other words, signals are conclusive that θ = 0. This means
the agent’s posterior belief that θ = 1 increases in the absence of signals. The agent
can receive multiple signals over time, but because signals are conclusive, the agent’s
belief about the state does not change upon receiving additional signals.

Agent’s (private) belief/types. Throughout the game, the agent updates his
belief about the state through the realization of the signal process. In particular, let
ts denote the arrival time of the first signal. Define the agent’s posterior belief that
θ = 1 conditional on no signal arriving by t as ρ(t) := Pr(θ = 1|ts > t). By Bayes’
rule,

ρ(t) =
µ

µ+ e−λt(1− µ)
. (1)

This belief ρ(t) is strictly increasing in t. If a signal arrives at ts, the agent’s belief
drops down to 0 for all t ≥ ts. The agent’s belief remains his private information—
even though the evolution of the signal process will be publicly observable once the
agent starts disclosing, the signal arrivals (or lack thereof) prior to the start of dis-
closure remains private.

At any t, the agent either has observed a signal and has belief 0 or he has not
observed a signal and has belief ρ(t). I say that the agent is informed at t if he has
observed a signal at or before t, or uninformed at t if he has not.

Actions and payoffs

Over time, the agent privately receives an opportunity to start disclosing that has
Poisson arrival rate α > 0. This process is independent of the state and the signal

8



process. The agent can start disclosing at any time after the arrival of an opportunity.4

Suppose the first opportunity arrives at time to. If the agent starts disclosing at time
tstart ≥ to, he commits to disclosing all signal arrivals (or lack thereof) for t > tstart.
The agent cannot disclose the realization of the signal process for t ≤ tstart. The
decision maker observes tstart, the time at which the agent starts disclosing, but not
the time at which the opportunity arrives, nor can the agent disclose this information.

Once disclosure starts at tstart, the agent chooses a time tstop ≥ tstart to stop
disclosing. Also, starting at time tstart, an exogenous termination arrives with Poisson
arrival rate β > 0. This process is independent of the state and the signal process. As
soon as a termination occurs, the game ends. Suppose a termination occurs at time
tterm. The decision maker observes the time at which disclosure ends, min{tstop, tterm},
but does not observe whether the end of disclosure is the agent’s choice or exogenous.

The decision maker takes an action a ∈ R at and only at the time disclosure ends.
The decision maker’s realized payoff is 1− (a− θ)2 and the agent’s realized payoff is
κ + a, where κ > 0 is constant.5 Both players collect payoffs at the time disclosure
stops, and discount future payoffs at a common discount rate r > 0.

Discussion of Assumptions. The two Poisson arrival processes, opportunity to
start disclosing and exogenous termination, capture the idea that the timing of the
disclosure window is sometimes restricted by exogenous factors unrelated to the un-
derlying nature of the state. Take the drug approval process for example. The drug
company needs to get the relevant paperwork ready, sort out administrative issues,
and get financing in order before they can file for clinical trials. Similarly for the end
of disclosure, clinical trials might be terminated unexpectedly because of fundings
falling through, or a change in the company’s leadership where the new board has no
interest in developing the drug and wants to wrap up testings as soon as possible.6

From a modeling perspective, these two processes provide the noise that prevents
the decision maker from getting all of the agent’s information upon an observable

4I focus on the arrival of the first opportunity. Multiple opportunity arrivals do not matter as
long as the agent can start disclosing when the first one arrives.

5The constant term κ > 0 in the agent’s payoff captures the idea that delay is costly: if there
exists a time t̄ such that the decision maker takes a fixed action for any t ≥ t̄, the agent strictly
prefers stopping disclosure at the earliest time t̄. The decision maker’s payoff has an analogous
constant. This constant is strategically irrelevant and is normalized to 1.

6See Sica (2002) or Williams, Tse, DiPiazza, and Zarin (2015).
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action.7 The decision maker observes the times at which disclosure starts and stops,
but not the underlying reasons. To be specific, if disclosure has not started, the
decision maker cannot determine whether it is because the agent chooses not to start,
or because the agent does not have an opportunity to do so. Similarly, if disclosure
stops, the decision maker does not know whether it is because the agent chooses to
stop, or because disclosure is exogenously terminated.

These two assumptions are similar to the uncertain information endowment as-
sumption in Dye (1985). Instead of information endowment, in this dynamic setting,
when the agent gets the ability to take actions is uncertain. In Section 5.2, I discuss
benchmark cases where these two assumptions are dropped.

Strategies and solution concept

The strategy of the agent describes when to start and when to stop disclosing. As is
standard, strategies can be described in terms of probability distribution functions.
I focus on strategies that satisfy a Markov restriction, and introduce the formal defi-
nition in the context of Markov strategies.

For a mixed starting strategy, let Φ(t|to, ts) denote the probability that the agent
starts disclosing before or at time t given that the opportunity arrives at to < t and
the first signal arrives at ts < t. Let Φ(t|to,∅) denote the probability that the agent
starts disclosure by time t given that the opportunity arrives at to < t and no signal
has arrived by time t. That is, for each to and each ts, Φ(t|to, ts) measures, for each t,
the probability to start disclosing by time t; for each to, Φ(t|to,∅) measures, for each
t, the probability to start disclosing by time t. Note that defining mixed strategy
in this way imposes an implicit Markov restriction that specifies that the stopping
decision depends only on the time of the first signal arrival, even if the agent may
have observed more than one. I impose an additional Markov restriction that specifies

Φ(t|to, t′s) = Φ(t|to, t′′s) for all t′s, t
′′
s < to.

In words, if the agent is informed by the time he gets the opportunity to disclose, his
starting decision does not depend on the time at which he becomes informed.

7Similar assumptions can be found in, for example, Ekmekci, Gorno, Maestri, Sun, and Wei
(2022). They study a game between a principal and an agent, and assume the principal gets stochas-
tic opportunities to terminate her relationship with the agent.
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I impose a similar set of Markov restrictions on the stopping strategy. At the time
disclosure starts, denoted by tstart, recall that the agent’s private history contains the
signal arrivals prior to the start of disclosure, and the time of his opportunity arrival.
I impose a Markov restriction that specifies that, instead of the entire private history,
the agent’s stopping strategy only depends on whether he is informed or uninformed
prior to the start of disclosure. Because the game ends when an exogenous termination
occurs, a stopping strategy only needs to specify the agent’s actions in the absence
of exogenous termination.

I reason in terms of the waiting time since tstart. That is, if the agent stops at
w ≥ 0, it translates to stopping at the calendar time tstart + w. Within [0, w], signal
arrivals are public. I impose a Markov restriction that specifies that the agent’s
stopping strategy depends only on the arrival time of the first public signal. Formally,
let ws ≥ 0 denote arrival of time of the first public signal. Let GI(w|tstart, ws) denote
the probability that an informed agent stops disclosure by time w, given disclosure
started at tstart and the first public signal arrives at ws < w. Let GI(w|tstart,∅)

denote the probability that an informed agent stops disclosing by time w, given
disclosure started at tstart and no public signal has arrived by w. The uninformed
agent’s probabilities GU(w|tstart, ws) and GU(w|tstart,∅) are defined in the same way.
I impose an additional Markov restriction that specifies

GI(w|tstart, ŵ) = GU(w|tstart, ŵ).

In words, if a public signal arrives at ŵ, the informed agent and the uninformed agent
adopt the same stopping strategies at and after ŵ.8

The decision maker takes an action when and only when disclosure ends. Denote
this time by tend. Note that disclosure ends at the minimum of the time the agent
stops and the time when termination occurs. Denote the set of public history at time
tend by Hpub

tend
and an element of it hpub

tend
. Then hpub

tend
consists of the time at which

disclosure starts tstart, the time at which disclosure stops tend, and the evolution of
the signal process in [tstart, tend]. The decision maker’s strategy maps a public history
to a real number.

I focus on the set of perfect Bayesian equilibria in which the agent adopts Markov
strategies defined above (referred to as equilibrium hereinafter).

8In equilibrium, both types of agent stop disclosing immediately as soon as a public signal arrives.
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To rule out equilibria that arise due to unreasonable off-path beliefs, I use an
equilibrium refinement that is in the spirit of the divinity refinement introduced by
Banks and Sobel (1987).9 I discuss how divinity plays a role in more detail when I
characterize the equilibrium.

3 Equilibrium Analysis

In this section, I characterize a class of equilibria of this game. I begin by character-
izing the decision maker’s equilibrium strategy, and devote the rest of the section to
characterizing the agent’s.

3.1 Decision Maker’s Equilibrium Strategy

The decision maker takes an action at and only at the time disclosure ends, tend.10 As
mentioned, a public history at tend, denoted by hpub

tend
, contains the time at which disclo-

sure starts, the time at which disclosure ends, and signal arrivals (or lack thereof) in
between. Given any public history hpub

tend
, the decision maker’s maximization problem

is
max
a∈R

Eσ
[
e−rtend

(
κ− (a− θ)2

)
| hpub

tend

]
,

where the expectation is taken over the agent’s strategies, denoted by σ. This implies
that in equilibrium, the decision maker’s action is equal to her expectation of the
state given the public history. Because the state is either 0 or 1, this expectation is
equal to her posterior belief that θ = 1. The following lemma summarizes this result.

Lemma 1. In any equilibrium, at the time disclosure ends tend, given any public
history hpub

tend
, the decision maker’s action is

a = Eσ[θ | hpub
tend

] = Pr(θ = 1 | hpub
tend

).

9With a slight abuse of terminology, I refer to this refinement as divinity. The divinity refinement
introduced by Banks and Sobel (1987) cannot be applied directly to a continuous time infinite horizon
setting.

10In particular, the decision maker does not/cannot take an action if disclosure never ends.
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3.2 Agent’s Equilibrium Strategy

The rest of Section 3 is dedicated to characterizing the agent’s equilibrium strategies.
It is convenient to divide the game into two stages: the initial starting game and the
continuation stopping game.

In the initial starting game, the strategy of the agent is a time to start disclosing.
After the agent starts disclosing, the game moves to the continuation stopping game,
which is a game of incomplete information in which at the beginning of the stopping
game, the agent is either informed or uninformed. The strategy of the agent is a time
to stop disclosing. To keep the analysis in perspective, I first provide a characteriza-
tion of the equilibrium and discuss the intuition in Section 3.2. I then analyze the
equilibrium in detail and discuss some of the interesting dynamics and properties in
Section 3.3 and Section 3.4.

Equilibrium characterization

Theorem 1 below characterizes a class of equilibria of this game. This class of equilib-
ria features the two types of agent following the same starting strategy and different
stopping strategies. Specifically, at the beginning of the game, conditional on having
the opportunity, both types of agent delay starting until some time τ ∗ ≥ 0.11 At and
after τ ∗, both types of agent start disclosure as soon as an opportunity arrives. Once
disclosure starts, the uninformed agent waits for a certain amount of time w∗ (where
w∗ depends on the time disclosure starts) to stop disclosure, while the informed agent
randomizes over waiting times in [0, w∗].

With a slight abuse of notation, given that disclosure starts at tstart, let GI(w)

and GU(w) denote respectively the informed and uninformed agent’s probability of
stopping by w given no signal in [0, w] (and no exogenous termination by w). That
is, GI(w) = GI(w|tstart, ws > w) and GU(w) = GU(w|tstart, ws > w). The equilibrium
can be stated as follows.

Theorem 1.A. The following strategy is an equilibrium of the starting game. There
exists τ ∗ ≥ 0 such that neither type of agent starts disclosing for t < τ ∗, and both
types of agent start disclosing as soon as an opportunity arrives for t ≥ τ ∗. That is,

11Depending on the parameters, τ∗ can be 0 which means the agent does not delay.
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for all ts,

Φ(t|to, ts) =

0 t < τ ∗

1 t ≥ max{τ ∗, to}
.

The decision maker’s belief that θ = 1 if disclosure starts is 0 for t < τ ∗ (starting
disclosure is off-path), and is µ for t ≥ τ ∗ (starting disclosure is on-path).

Theorem 1.B. Suppose disclosure starts at t ≥ τ ∗. There exists a unique divine
equilibrium of the stopping game. This equilibrium takes the following form: there
exists a waiting time w∗ ≥ 0 (where w∗ depends on t) such that

(i) if a signal arrives at w ∈ [0, w∗], the agent stops disclosing immediately at w;

(ii) if no signal arrives in [0, w∗], the uninformed agent stops disclosing at w∗ with
probability 1:

GU(w) =

0 w ∈ [0, w∗)

1 w ≥ w∗
. (2)

The informed agent randomizes over waiting times in [0, w∗]. His stopping prob-
ability GI(w) is the unique solution to the following boundary value problem:12

for all w ∈ [0, w∗],

G′′I (w) = G (GI(w), G′I(w), w), GI(0) = 0, GI(w
∗) = 1, and G′I(w

∗) = 0.

The decision maker’s off-path belief that θ = 1 if disclosure stops at w > w∗ is the
same as the uninformed agent’s belief ρ(t+ w).

Theorem 1.A characterizes the agent’s strategies in the starting game. The agent
either delays starting disclosure (τ ∗ > 0), or starts disclosing as soon as an opportunity

12Given that disclosure starts at t, in this equilibrium, the uninformed agent’s belief that θ = 1
at the beginning of disclosure t is ρ(t) and the decision maker’s is µ. Then G is given by

G (GI(w), G′I(w), w) :=βG′I(w)− βρ(t)

ρ(t)− µ

(
r(1− µ) + eλwµ

(
rκ

(
µ+ e−λw (1− µ)

µ

)2

+ r + λ

))

+ r

(
1 + 2κ

(
µ+ e−λw(1− µ)

µ

))
(βGI(w)−G′I(w))

− rκe−λw(ρ(t)− µ)

βρ(t)µ
(βGI(w)−G′I(w))

2
.
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arrives (τ ∗ = 0). The parametric restriction that defines these two cases comes down
to how discounting compares to the arrival rate of signals. Loosely speaking, because
the decision maker only takes the action when disclosure ends, delaying the start of
disclosure is costly due to discounting. The benefit, on the other hand, is the agent’s
ability to learn about the state in private: if a (conclusive bad) signal arrives, the
agent learns that the state is bad without having to share this information with the
decision maker. Delaying the start of disclosure is beneficial if discounting is small
comparing to the arrival rate of signals.

Theorem 1.B characterizes the agent’s strategies in the stopping game. While
disclosure is open, the longer the decision maker has not seen a signal, the more
optimistic she becomes. However, the risk of a signal arriving also increases. This
tradeoff leads to delayed stopping by the more optimistic (uninformed) agent.

The equilibrium dynamics are best illustrated in terms of the decision maker’s
belief evolution. Figure 1 plots an example of the decision maker’s (on-path) belief
conditional on no signal arrivals in an equilibrium with initial delay till time τ ∗ > 0.

1

0 τ ∗
0

µ

disclosure
window

disclosure
does not start

tstart tend tstart + w∗

DM’s belief
if disclosure doesn’t stop

DM’s belief
if disclosure stops

uninformed agent’s
private belief

t

Figure 1: Agent’s and decision maker’s belief evolutions in an equilibrium with initial
delay for µ = 0.5, r = 0.01, λ = 5, α = 1, β = 0.5.

Because signals are conclusive that the state is 0, the uninformed agent’s posterior
belief that state is 1 increases over time in the absence of signals. The decision maker’s
belief that θ = 1 evolves according to the arrowed path. In this equilibrium, the two
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types of agent adopt the same starting strategy. The observation that disclosure does
not start before τ ∗ or starts after τ ∗ is uninformative about the agent’s type and
therefore uninformative about the state. So the decision maker’s belief that θ = 1 is
equal to her prior.

Suppose disclosure starts at time tstart. Along the history in which a signal does
not arrive, disclosure lasts for a (maximum) duration of w∗.13 The shaded region from
time tstart to tstart +w∗ is the disclosure window and w∗ is the length, or the duration,
of this disclosure window. During the disclosure window, not only is the evolution of
the signal process informative of the state, but also the stopping of disclosure is bad
news about the agent’s private information prior to disclosure. In particular, only the
informed agent intentionally stops within this window. Thus, “not stopping” is good
news while “stopping” is bad: the decision maker’s belief if disclosure does not stop
increases over time, and drops down if disclosure stops.

I now analyze the equilibrium in the two stage games respectively. To better un-
derstand the dynamics of this game, it is more intuitive to start with the continuation
stopping game given a starting time, and then work backwards to solve the initial
starting game.

3.3 Stopping Game

In the stopping game, the agent chooses a time to stop disclosure. At the beginning
of the stopping game, the agent can be either informed or uninformed. Conceptually,
the stopping game can be parameterized by the uninformed agent’s (private) belief
that θ = 1, denoted by ρ, and the decision maker’s belief that θ = 1 conditional on
disclosure starting, denoted by η.14 In this game, the decision maker cannot be more
optimistic about the state than the uninformed agent. That is, ρ ≥ η. I characterize
the equilibrium conditional on exogenous termination not occurring.15

In the stopping game, there are two types of (public) histories: a history along
which there is a (conclusive bad) signal arrival and one where there is not. When

13More precisely, the agent can choose to stop disclosing prematurely before w∗, or disclosure can
terminate exogenously before w∗.

14I characterize the equilibrium for any ρ ≥ η. Both ρ and η are determined by the equilibrium
starting time tstart in the initial starting game. Specifically, ρ = ρ(tstart) where ρ(·) is defined in (1).
The decision maker’s belief is η = η(tstart). (Given the equilibrium starting strategy characterized
in Theorem 1.A, η = η(tstart) = µ for all tstart.)

15Recall that the game ends when exogenous termination occurs.
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a signal arrives at some time, it overrides information transmitted through all other
channels. By Lemma 1, the decision maker’s action is 0 at any stopping time after a
signal. Because of discounting, the agent strictly prefers stopping immediately at the
time of the signal arrival. This is formalized in part (i) of Theorem 1.B.

Along the history with no signal arrivals, the decision maker has no way of learn-
ing the state with certainty and the agent signals his type through the stopping time
of disclosure. Because of the possibility of exogenous termination, the informed agent
can disguise himself as an uninformed agent whose disclosure process has been ex-
ogenously terminated. This gives the uninformed agent incentives to delay stopping
in an attempt to differentiate himself from the informed agent.

To formalize this result, I first derive the decision maker’s belief when disclosure
stops. Because this is also the action the decision maker takes, it is a key element in
determining the agent’s equilibrium stopping strategies.

Decision maker’s (public) belief. While the disclosure window is open, the de-
cision maker updates her belief that θ = 1 through the evolution of the signal process
and the observation of disclosure stopping. Let q(w) denote the decision maker’s
posterior belief that θ = 1 if disclosure stops at waiting time w. Given disclosure has
started, the public history at w consists of the event that no signal arrives in [0, w],16

and that disclosure stops at w. Let ws denote the arrival time of the first public
signal. Then

q(w) := Pr(θ = 1|ws > w,wstop = w).

To derive this belief, let F θ(w) denote the probability that disclosure stops by w
conditional on state θ, and f θ(w) its density whenever differentiable. Conditional on
θ = 1, the agent can only be uninformed. Disclosure stops when either the agent
chooses to stop or termination occurs. That is,

f 1(w) = G′U(w)e−βw + βe−βw(1−GU(w)). (3)

To derive the rate at which disclosure stops at w conditional on θ = 0, it is useful
to first define the probability that the agent is informed at the beginning of the
continuation game conditional on θ = 0. Denote this probability by γ. Given ρ and
η, γ is given by η = ρ(1− γ(1− η)). By the same logic as the θ = 1 case, conditional

16Recall that w ≥ 0 is the waiting time after disclosure starts, not the calendar time.
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on θ = 0,

f 0(w) = (1− γ)f 1(w) + γ
[
G′I(w)e−βw + βe−βw(1−GI(w))

]
. (4)

By Bayes’ rule,

q(w) =
f 1(w)η

f 1(w)η + e−λwf 0(w)(1− η)
. (5)

Agent’s expected payoff. Given q(w), the informed agent’s expected payoff from
waiting w to stop disclosing consists of three cases. The first case is when a signal
arrives before a termination occurs during the waiting time. The agent stops imme-
diately and the decision maker takes action 0. The second case is when a termination
occurs at some time s before a signal arrives. The decision maker takes action q(s).
The third case is when no signal arrives and no termination occurs. The decision
maker takes action q(w) at w.17 Denote by V (w) the informed agent’s expected
payoff from waiting w, and U(w) the uninformed agent’s.

V (w) =

∫ w

0

e−rsλe−λse−βsκds+

∫ w

0

e−rse−λsβe−βs(κ+q(s))ds+e−rwe−λwe−βw(κ+q(w)).

Conditional on θ = 0, the uninformed agent’s expected payoff is the same as the
informed. The uninformed agent’s expected payoff from waiting w is

U(w) = (1− ρ)V (w) + ρ

(∫ w

0

e−rsβe−βs(κ+ q(s))ds+ e−rwe−βw(κ+ q(w))

)
.

It can be verified that if V (w) is (weakly) increasing in w, then U(w) is strictly
increasing in w. Intuitively, conditional on θ = 0, the longer disclosure stays open,
the more likely it is for a signal to arrive. The uninformed agent is more optimistic, so
if the informed agent is (weakly) willing to wait, the uninformed agent must strictly
prefer doing so.

Exploiting this property, I show existence of an equilibrium of the following form.
Over an interval of waiting time [0, w∗], the informed agent randomizes over waiting
times in [0, w∗], and the uninformed agent strictly prefers waiting till w∗. Both types
stop with probability 1 by w∗. I then show that this is the unique equilibrium of the

17The event that both a signal and termination arrive in a small interval [w,w + dw) is of order
(dw)2 and can be neglected.
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continuation game that survives the divinity refinement.

3.3.1 Equilibrium Dynamics

The most intuitive way to understand the equilibrium dynamics is through the de-
cision maker’s belief evolution. In equilibrium, the informed agent’s randomization
over waiting times feeds into the decision maker’s belief evolution which in turn keeps
the informed agent’s expected payoff from stopping constant over time. Specifically,
V ′(w) = 0 implies

q′(w) = rκ+ (r + λ)q(w). (6)

While the disclosure window is open, the informed agent discounts at an exponential
rate, and the signal arrival times are exponentially distributed. The informed agent’s
indifference condition (6) captures that the decision maker’s belief when disclosure
stops needs to counteract these two forces and increase exponentially.18

In this game, the decision maker’s belief that θ = 1 is bounded above by the
uninformed agent’s at any point in time. This suggests q(w) cannot exponentially
increase indefinitely and disclosure must stop before this belief exceeds the uninformed
agent’s. The following lemma takes this observation one step further and shows that
if disclosure stops at the end of the disclosure window, the decision maker infers that
the agent must be uninformed, and therefore, her posterior belief that θ = 1 must
equal the uninformed agent’s.

Lemma 2. If the informed agent’s strategy is atomless with support [0, w∗], then

q(w∗) =
ρ

ρ+ e−λw∗(1− ρ)
. (7)

Moreover, w∗ <∞.

Intuitively, at the end of the disclosure window, both types of agent stop disclosing
with probability 1. Moreover, the informed agent stops continuously throughout.
Therefore, the mass of informed agent who has not stopped at this point is zero,
and stopping can only come from the uninformed agent. As will be discussed later,
this structure where the informed agent stops continuously throughout the entire

18Specifically, the solution to the first-order differential equation (6) is q(w) = me(r+λ)w−κr/(r+λ)
with constant m > 0 to be determined in equilibrium.
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duration of the disclosure window is the unique equilibrium that survives the divinity
refinement.

To further understand the equilibrium dynamics, consider the decision maker’s
belief before disclosure stops. Let qC(w) denote the decision maker’s belief given this
history. That is,

qC(w) := Pr(θ = 1|ws > w,wstop > w).

Because only the informed agent voluntarily stops during the disclosure window,
qC(w) is increasing in w and qC(w) > q(w) for all w < w∗.

In summary, from the decision maker’s perspective, stopping prematurely before
the disclosure window duration w∗ is bad news—whenever disclosure stops, the de-
cision maker’s belief drops from qC(w) to q(w). However, later premature stopping
is good news—a longer duration without a signal arrival induces a higher belief that
the state is good, and later stopping implies there’s a higher chance that the agent is
uninformed to begin with. Figure 2 illustrates the dynamics by plotting the decision
maker’s beliefs as functions of waiting time w.

1

0 w∗wstop
0

ρ

η

uninformed agent’s
private belief

qC(w) = Pr(θ = 1|ws > w,wstop > w)

q(w) = Pr(θ = 1|ws > w,wstop = w)

w

beliefs

Figure 2: The decision maker’s beliefs for ρ = 0.7, η = µ = 0.5, λ = 3, r = 0.5, α =
1, β = 0.5, and κ = 1.

Boundary value problem. While the evolution of the decision maker’s belief q(w)

illustrates the equilibrium dynamics, it does not pin down the equilibrium strategies
GI(w)—some properties of the agent’s strategies get lost during their translation to
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beliefs. In the strategy space, GI(w) is continuous at any w ∈ [0, w∗], in particular,
at w = 0, so GI(0) = 0. The informed agent stops with probability 1 by w∗ means
GI(w

∗) = 1. Together with Lemma 2, they imply G′I(w∗) = 0. Moreover, equation
(6) defines a second-order differential equation in GI . All together, they form the
boundary value problem stated in part (ii) of Theorem 1.B. By a shooting argument,
this boundary value problem has a unique solution. Figure 3 plots this solution,
GI(w), as well as the uninformed stopping strategy, GU(w).

1

0 w∗0
GU(w): uninformed

GI(w): informed

w

GU(w), GI(w)

Figure 3: Agent’s equilibrium strategies GU(w) and GI(w) for ρ = 0.7, η = 0.5, λ =
3, r = 0.5, α = 1, and β = 0.5.

3.3.2 Divinity and Equilibrium Uniqueness

Given a fixed equilibrium, divinity specifies that the decision maker’s off-path belief
should assign zero weight to the agent being the type that has less incentive to deviate.
In this game, continuing disclosure after w∗ is off the equilibrium path. Intuitively, for
any given belief of the decision maker, the uninformed agent always has a stronger
incentive to keep disclosure open. Therefore, the decision maker’s off-path belief
should assign zero weight to the agent being informed.

This means that the uninformed agent can always “prove” that he is uninformed
by deviating to this off-path play. If the uninformed agent were ever to stop on the
equilibrium path, it must be that whenever the uninformed agent chooses to stop,
the decision maker’s belief upon stopping is that the agent is uninformed. In turn,
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because posterior belief is a martingale, stopping at any w ≥ w∗ induces the same
expected posterior belief. Because of discounting, the uninformed agent stops at w∗.

The above argument shows that in a divine equilibrium, the decision maker’s belief
that θ = 1 at w∗ must be equal to the uninformed agent’s. In addition, the decision
maker’s belief that θ = 1 must also be continuous at w∗: any jump in belief at w∗

will result in a profitable deviation to stopping at w∗ for the informed agent. These
conditions pin down the boundary conditions in the boundary value problem stated
in Theorem 1.B (ii), giving rise to equilibrium uniqueness. Without divinity, one
can construct equilibria where disclosure stops after any amount of waiting time by
imposing a punishing belief that deters the agent from keeping the disclosure window
open after said waiting time.19

3.3.3 Role of Information Asymmetry

Because the agent might be informed prior to starting disclosure, at the time disclo-
sure starts, the decision maker’s belief that θ = 1 is lower than the uninformed agent’s.
As it turns out, it is precisely this information asymmetry that enables information
transmission in the stopping game.

To see this, suppose the agent is uninformed and the decision maker knows that.
Because the posterior belief is a martingale, stopping at any time would induce the
same expected action. Because of discounting, the agent will stop disclosing imme-
diately and the decision maker takes an action that is equal to the common belief.
Hence, the possibility that the agent is informed forces the uninformed agent to keep
the disclosure window open in the hope that the lack of signals corroborates that he
is uninformed, enabling information transmission. The following lemma formalizes
this result.

Proposition 1. w∗ > 0 if and only if ρ > η.

In some sense, the agent does not care about what he knows but what the decision
maker knows. The uninformed agent is more optimistic than the decision maker, and
his incentive to delay stopping and let information flow is not due to learning for
himself. Instead, he delays so that the decision maker can learn and become as
optimistic as he is.

19More precisely, with a punishing belief, one can construct equilibria that “ends early” by having
a mass of informed agent stopping at the end of the disclosure window.
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Comparative statics. As analyzed above, the duration of the disclosure window is
determined by how long it takes to eliminate the information asymmetry between the
agent and the decision maker at the start of disclosure. It is intuitive that the larger
this information asymmetry is, the longer it takes to weed it out. This suggests that
the duration of the disclosure window should increase in the magnitude of information
asymmetry. The following result formalizes this intuition.

Lemma 3. The equilibrium waiting time w∗ is increasing in ρ and decreasing in η.

Although intuitive, technically w∗ is part of the solution to a boundary value prob-
lem and is pinned down in equilibrium through the informed agent’s randomization,
so proving Lemma 3 is not straightforward. Nevertheless, this result is crucial in an-
alyzing the starting game in Section 3.4, and deriving the main insight of the paper
in Section 4. The analysis so far has demonstrated that the degree of information
asymmetry at the beginning of the disclosure window impacts the duration of the
disclosure window. Section 4 concerns how this degree of information asymmetry is
affected by the time disclosure starts. On that note, I now turn to analyzing the
agent’s optimal time to start disclosure.

3.4 Starting Game

In the initial starting game, the agent chooses a time to start disclosure, knowing that
this starting time induces a duration for which he will keep the disclosure window
open, given by the (unique) equilibrium in the continuation stopping game.

Unlike the stopping game where any signal arrival is public information, the
agent’s learning is private prior to the start of disclosure. On the one hand, if the
agent delays the start of disclosure and a signal arrives during this time, the agent is
able to conceal this information from the decision maker, and behave optimally as an
informed agent onward. Had the agent not delayed, the decision maker would have
seen this signal and taken action 0. On the other hand, delay in the start of disclosure
translates to a delay in the expected time till payoff realizes, which incurs a cost due
to discounting.20

20More precisely, suppose the decision maker’s belief does not change no matter when disclosure
starts. Prior to the start of disclosure, the (uninformed) agent becomes optimistic. Thus, the un-
informed agent’s belief that θ = 1 and the decision maker’s belief grows divergent. As implied by
Lemma 3, the (uninformed) agent needs to keep the disclosure window open longer in the continua-
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If the agent is impatient relative to the value of information, he starts disclosing as
soon as he gets the opportunity. Otherwise, he delays to privately learn for a certain
amount of time before starting. I provide sufficient conditions under which starting
immediately is an equilibrium, and sufficient conditions under which delaying is an
equilibrium whenever starting immediately is not.21

To simplify the exposition, for the rest of the analysis, I impose the following
assumption. This assumption plays no role in the stopping game; it simplifies the
analysis in the starting game and delivers a clean intuition.

Assumption. Assume the (common) prior that θ = 1 is µ ≥ 1/2.

3.4.1 Immediate Disclosure Equilibrium

The following proposition provides sufficient conditions under which it is an equilib-
rium for both types of the agent to start disclosing as soon as they get an opportunity.
I refer to this equilibrium as the immediate disclosure equilibrium.

Proposition 2. If
r

λ
≥ (1− µ)µ

κ+ µ
, (8)

then immediate disclosure is an equilibrium.

To interpret condition (8), consider a scenario in which whenever disclosure starts,
it stops immediately and the decision maker believes that the agent is uninformed.
This is the best case scenario for both types of agent—the decision maker takes the
highest possible action and the agent does not need to engage in any waiting to induce
it.22

Condition (8) can be rearranged as λ(1 − µ)µ ≤ r(κ + µ). The left-hand side,
λ(1−µ)µ, is the marginal benefit from delaying in this best case scenario. At time 0,
with an expected rate of λ(1 − µ), a signal arrives. By delaying for an infinitesimal
amount of time, the agent learns that the state is θ = 0 but the decision maker does

tion game. Therefore, a delay in the start of disclosure results in an even longer disclosure window,
and hence a longer expected time until payoff realizes.

21I focus on the incentive of an agent who has the opportunity to disclose at time 0. An agent
who got the opportunity at later times has the same incentive. Details of this argument are in Proof
of Theorem 1.A in the Appendix.

22The highest possible action is subject to the decision maker’s optimality: the decision maker’s
action is equal to her posterior belief that θ = 1. In this best case scenario, this belief is equal to
the uninformed agent’s belief which is the highest possible belief any player can have.
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not. The agent then immediately stops and gets payoff κ+ µ. If he had not delayed
and had started disclosing right away, the decision maker would have seen the signal
and taken action 0, the agent then gets payoff κ + 0. The gain is therefore µ. The
right-hand-side, r(κ + µ), is the marginal cost from delaying. Because there is no
waiting in the continuation game, the cost purely comes from discounting.

Therefore, condition (8) implies that, in the best case scenario where the agent
does not need to wait in the continuation game, discounting (r) is so large relative to
information (λ) that the agent does not want to delay starting at any point in time.23

Thus, in the case where the agent does have to wait in the continuation game and
have to wait even longer if he starts later, the agent would not want to delay.

3.4.2 Delayed Equilibrium

In a delayed equilibrium, neither type of agent starts disclosure until some τ ∗ > 0.
Then both start immediately at and after τ ∗. That is, if an agent already has the
opportunity before τ ∗, they start disclosing immediately at τ ∗, otherwise they start
disclosing as soon as they receive the opportunity. The decision maker’s belief that
θ = 1 is 0 if disclosure starts off-path before τ ∗.

The key is to characterize τ ∗. By the above argument, if immediate disclosure is
not an equilibrium, then there must exist a point in time where the value of private
learning is large relative to discounting. Because µ ≥ 1/2 by assumption, the value
of private learning diminishes as time goes by, and will eventually be overwhelmed by
discounting. This means that if an equilibrium prescribes immediate disclosure after
some time τ ∗, this τ ∗ needs to be large enough until the discounting effect dominates.

On the other hand, τ ∗ cannot be too large. Otherwise the (informed) agent would
rather deviate to starting disclosure right away and getting action 0 (as the decision
maker’s off-path belief is 0), than waiting till τ ∗ for the chance of inducing a higher
action. The following proposition provides sufficient conditions for the existence of a
τ ∗ that strike a balance between these two forces.

Proposition 3. Fix parameters such that immediate disclosure is not an equilibrium.
There exists 0 < κ ≤ (λ/r)(1−µ)µ−µ such that for all κ ≤ κ, there exists τ ∗(κ) > 0

such that it is an equilibrium for neither type of agent to start disclosing for t < τ ∗(κ),
23More precisely, condition (8) implies that the agent does not want delay at t = 0. For t > 0, a

similar condition can be obtained by replacing µ on the right-hand side with the uninformed agent’s
belief ρ(t). Condition (8) implies the same inequality holds with ρ(t) for all t > 0.
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and both types of agent to start disclosing as soon as an opportunity arrives for t ≥
τ ∗(κ). The decision maker’s belief that θ = 1 if disclosure starts off-path at t < τ ∗(κ)

is 0.

In words, the key to sustain this delayed equilibrium is the additive constant κ
in the agent’s payoff being small. Intuitively, in the stopping equilibrium analyzed
in Section 3.3, because of exogenous termination, it is always possible that stopping
is due to an uninformed agent getting terminated. So in the absence of signals,
the decision maker’s belief when disclosure stops at any point in time is strictly
positive. This means if the agent follows the equilibrium path and waits till τ ∗ to
start disclosure, his on-path expected action is strictly positive. Thus, if κ is small,
the agent (both types, the informed in particular) would prefer waiting to induce a
strictly positive action, than getting the zero action right away.

3.4.3 Divinity and Equilibrium Multiplicity

The immediate disclosure equilibrium survives the divinity refinement trivially be-
cause there are no off-path actions. For the delayed equilibrium, starting disclosure
before τ ∗ is off the equilibrium path and, as mentioned, the decision maker’s off-path
belief that θ = 1 is zero. Is this punishing off-path belief consistent with the divinity
refinement?

As discussed in the stopping game in Section 3.3, the divinity refinement specifies
that the decision maker’s off-path belief should assign zero weight to the type of agent
that has less incentive to deviate. The zero off-path belief assigns zero weight to the
uninformed agent: if disclosure starts before τ ∗, the decision maker thinks that it is
the informed agent who has deviated, and thus believes that θ = 0. For this to be
consistent with the divinity refinement, at each t < τ ∗, for any decision maker’s belief
η ∈ [0, ρ(t)] such that the uninformed agent finds it (at least weakly) profitable to
deviate to starting at t, the informed agent must find it strictly profitable to deviate.
In other words, the set of decision maker’s beliefs that induce a profitable deviation
for the uninformed agent must be a proper subset of that for the informed agent.

Whether this condition is satisfied in equilibrium depends on the parameters.
Figure 4 plots two numerical examples, both of which satisfy the sufficient condition
in Proposition 3 and thus are equilibria. The picture on the left is an example where
the equilibrium is divine, the one on the right is not. The red (solid) area plots the
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set of decision maker’s belief η such that the informed agent finds it profitable to
deviate, and the blue (patterned) area is where the uninformed agent finds profitable
to deviate. To satisfy divinity, the blue set needs to be entirely contained in the red.

0 τ ∗ = 0.53
0

1

µ

t

η

uninformed deviates

informed deviates

0 τ ∗ = 2
0

1

µ

t

η

uninformed deviates

informed deviates

Figure 4: Numerical examples where a delayed equilibrium is divine (left panel, τ ∗ =
0.53) and is not (right panel, τ ∗ = 2). Parameters are µ = 0.5, r = 0.01, λ = 5, α =
1, β = 0.5, and κ = 1.

In general, the initial starting game will have multiple equilibria. Within the class
of pooling equilibria characterized here, there typically exists a continuum of τ ∗’s
that can be sustained as an equilibrium and survives the divinity refinement. The
numerical examples above show that the divinity refinement can indeed eliminate
some equilibria, but in general, it cannot reduce the equilibrium set to a singleton.

4 Duration of Disclosure Windows

The equilibrium features a novel dynamic between the start disclosing time and the
stop disclosing time: delay in the start of disclosure leads to a longer disclosure
window. Proposition 4 formalizes this result and Figure 5 illustrates.

Proposition 4. The agent’s waiting time w∗(t) is increasing in the disclosure starting
time t. Moreover, there exists w∗ <∞ such that limt→∞w∗(t) = w∗.
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Figure 5: Agent’s waiting time w∗(t) as a function of the disclosure starting time t.
Left panel: τ ∗ = 0; µ = 0.5, r = 0.5, λ = 3, α = 1, β = 0.5, and κ = 1. Right panel:
τ ∗ = 0.53; µ = 0.5, r = 0.01, λ = 5, α = 1, β = 0.5, and κ = 1.

The agent and the decision maker start off with the same information about the
state, and become increasingly asymmetrically informed while the start of disclosure
is delayed. During this delay, the agent privately learns about the state through the
information process. He either becomes more optimistic in the absence of signals or
becomes informed whenever a signal arrives. The decision maker on the other hand,
does not get any information about the state: she does not observe the information
process, nor can she infer anything from the agent’s behavior because both types of
the agent adopt the same starting strategy. So on the equilibrium path, the decision
maker’s belief that θ = 1 stays the same as her prior.24 The longer the start of
disclosure is delayed, the more divergent the agent’s and the decision maker’s beliefs
become. The duration of the disclosure window is determined by the amount of time
it takes to eliminate this information asymmetry through disclosure. The uninformed
agent keeps the disclosure window open longer to reduce the now-larger information
asymmetry between him and the decision maker.

With time, the agent becomes more and more certain of the state. If disclosure
starts late in time, the continuation game approaches to a benchmark case in which
the agent knows whether the state is 0 or 1. Let w∗ denote the optimal waiting time

24While the decision maker’s belief about the state does not change, her belief about the agent’s
type does change. The probability that the agent is informed increases as time goes by, but if the
agent remains uninformed, his belief also increases. The decision maker’s belief that θ = 1 takes
expectations of these two beliefs and stays constant at the prior on average.
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in this benchmark case. The waiting time w∗(t) then converges to w∗ as t increases.
In the next section, I present this benchmark model and characterize w∗.

5 Benchmarks and Extensions

5.1 Perfectly Informed Agent

As a benchmark, consider the scenario in which the agent is informed of whether
the state is θ = 0 or θ = 1 at time 0. As disclosure starts later, the stopping game
converges to the benchmark case where the agent is perfectly informed. As mentioned
in Proposition 4, the waiting time in the continuation stopping game is bounded above
by w∗, which is the waiting time in this benchmark. Proposition 5 formalizes this
argument (the characterization of w∗ is relegated to the Appendix).

Proposition 5. In the continuation game, there exists 0 < w∗ < ∞ such that the
informed agent randomizes over stopping times in [0, w∗] and uninformed agent stops
with probability 1 at w∗.

5.2 Exogenous Termination and Starting Opportunity

In this section, I investigate the roles of exogenous termination and the opportunity
to start disclosing by considering two benchmark cases where each assumption is
dropped.

Exogenous termination. Suppose there is no exogenous termination. In the ini-
tial starting game, in equilibrium, both types of agent start disclosing as soon as they
get an opportunity. For any starting time t ≥ 0, there exists a (separating) equilib-
rium of the stopping game where the agent adopts a strategy that fully reveals his
type: for each t ≥ 0, there exists a unique waiting time w†(t) > 0 such that the unin-
formed agent stops at waiting time w† if no signal has arrived, and the informed agent
stops immediately at t. The optimal waiting time w†(t) is such that the informed
agent is indifferent between stopping at 0 and at w†(t). Thus, stopping immediately
and stopping at w†(t) respectively reveal that the agent is informed and uninformed.
The decision maker’s (off-path) belief if disclosure stops between 0 and w†(t) is that
the agent is informed and hence θ = 0.
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For starting time t > 0, this is the unique equilibrium that survives the divinity
refinement. For t = 0, there exists another divine equilibrium that is pooling: the
agent stops disclosing immediately at t = 0, and the decision maker’s belief that θ = 1

is equal to the common prior.
For t > 0, as the exogenous termination arrival rate β converges to 0, the equilib-

rium of the main model converges (pointwise) to the unique (separating) equilibrium
characterized by w†(t). For t = 0, which of the two equilibria it converges to depends
on the order of limits. Taking the limit as β goes to zero and then t to zero, the
equilibrium of the main model converges (pointwise) to the separating equilibrium;
taking the limit as t goes to zero and then β to zero, it converges (pointwise) to the
pooling equilibrium.

It remains true that the later disclosure starts, the longer it lasts. Because the
equilibrium waiting time w† strikes a balance between the risk of a bad signal arriving
and mimicking the uninformed agent, the duration of the disclosure window only
depends on the uninformed agent’s belief at the beginning of the window. Therefore,
the later disclosure starts, the more optimistic the uninformed agent is at the time it
starts, and the longer it is kept open (by the uninformed agent).

This means that the disclosure window only depends on the calendar time at
which it starts. The agent’s starting disclosure behavior has no strategic effect on the
duration of the disclosure window, and thus no effect on his continuation payoff. As
a result, both types of agent start disclosing as soon as they get an opportunity.

Starting opportunity. Suppose the agent can start disclosing at any point in time.
As discussed in the main model and above, any delay in the start of disclosure results
in a longer disclosure window. The (unique) equilibrium then features no strategic
interactions and no information transmission: the agent starts disclosing at time 0

and immediately stops disclosing at time 0. The decision maker takes an action that
is equal to the common prior at time 0.

5.3 Decision-Maker-Optimal Disclosure Duration

The disclosure environment features the agent controlling both the start and the stop
of the disclosure window. The resulting disclosure duration is what’s optimal for the
agent. What is the optimal disclosure duration for the decision maker? Is the decision
maker better off choosing the duration herself?
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In what follows, I study a model in which the decision maker chooses the stopping
time of disclosure in addition to the action taken at the end of disclosure. This model
highlights the fact that the (uninformed) agent’s incentive to keep disclosure open
differs from the decision maker’s. As in the main model, the decision maker can stop
and therefore take an action if and only if disclosure has started at some time prior.
The rest of the setup remains the same.25

In this model, the decision maker’s problem is Markov in her belief. She either
stops when she sees a signal and thus learns the state is 0, or she waits until her belief
reaches a threshold η that is independent of the time at which disclosure started. As
before, denote the decision maker’s belief at the beginning of the continuation game
by η. The following proposition formalizes this intuition.

Proposition 6. There exists ∆ > 0 such that
(i) if r/λ ≥ ∆, the decision maker stops immediately for all η ∈ (0, 1);
(ii) if r/λ < ∆, there exists η and η with 0 < η < η < 1 such that if η < η or η ≥ η,
the decision maker stops immediately. If η ∈ [η, η), the decision maker either stops
at the first time her posterior belief is equal to 0 or the first time her posterior belief
is equal to η.

Figure 6 plots the decision maker’s optimal waiting time that waits as a function
of her initial belief η (Case (ii) of Proposition 6). Recall that in the conclusive bad
news setting, the decision maker’s belief in the absence of signals increasing over time.
So the closer the decision maker’s initial belief is to the target belief η, the less time
it takes for her belief to increase to η.

Because the agent does not choose the stopping time, there is no value in delaying
the start of disclosure to obtain private information in the initial stage. As a result,
both types of agent start disclosing as soon as they get an opportunity.

Comparison with the main model

Incentive to delay. The decision maker’s and the agent’s incentives to delay in the
stopping game differ. The decision maker wants to take an action that matches the
state. Her incentive to delay stopping is driven by learning: the later she stops, the

25In particular, I maintain the assumption that disclosure can exogenously terminate at some
random time after it starts. This assumption plays no role other than to keep the model comparable
with the main model in the paper.

31



0 η η 1
0 η

w∗
DM(η)

Figure 6: Decision maker’s optimal waiting time for r = 0.5, λ = 5, and β = 0.5.

more she learns about the state and is thus able to take a more informative action.
This is in contrast to the (uninformed) agent’s incentive to delay stopping in the
main model. The agent wants the decision maker to take a high action regardless
of the state. Although the uninformed agent wants the decision maker to learn, he
cares asymmetrically about the direction in which the decision maker learns. The
uninformed agent cares about learning only to the extent of getting the decision
maker to believe the way he does.

Welfare. The decision maker is sometimes better off letting the agent choose the
duration of disclosure. Intuitively, the agent’s private information about the state
accumulates before the start of disclosure. In the case where the decision maker
chooses the stopping time, the decision maker has no way of extracting the agent’s
private information. On the other hand, in the main model where the agent chooses
the stopping time, because the two types of agent adopt different stopping strategies,
the stopping time signals the agent’s private information. Therefore, if the disclosure
starts at a later time when the agent has already accumulated a significant amount of
information, the decision maker benefits from letting the agent choose the stopping
time, and therefore can incorporate the agent’s private information when taking the
action.
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A Appendix

A.1 Proofs for Section 3

A.1.1 Proof of Lemma 1

Given any public history hpub
T at T , denote Pr(θ = 1|hpub

T ) = q(T ). The decision
maker’s problem is

max
a∈R

e−rT
[(

1− (a− 0)2
)

(1− q(T )) +
(
1− (a− 1)2

)
q(T )

]
Setting the derivative with respect to a to 0 results in a = q(T ). It can be readily
verified by checking the second derivative that this payoff function is maximized at
a = q(T ).

A.1.2 Proof of Theorem 1.B (i)

Suppose a signal arrives at ŵ ≥ 0. By Bayes’ rule, both the agent and the decision
maker’s belief is zero for all w ≥ ŵ. By Lemma 1, the decision maker takes action 0

if disclosure stops at any w ≥ ŵ. The agent’s expected payoff from stopping at any
w ≥ ŵ is e−r(w−ŵ)κ, which is maximized at ŵ.

A.1.3 Proof of Theorem 1.B (ii)

A.1.3 (I) Preliminaries

First, I introduce a useful notation for the uninformed agent’s belief in the continua-
tion game.

Suppose disclosure starts at tstart. At the beginning of the continuation stopping
game, the uninformed agent’s belief is ρ(tstart), where ρ(·) is given by (1). To simplify
notation, let ρ = ρ(tstart) and denote by p(w) the uninformed agent’s private belief
that θ = 1 calculated from the perspective of tstart,

p(w) :=
ρ

ρ+ e−λw(1− ρ)
.

In other words, p(w) = ρ(tstart + w).
Next, I write explicitly F 1(w) and F 0(w) as a function of the agent’s stopping

strategies GU(w) and GI(w).

33



Recall that F θ(w) is defined as the probability that disclosure stops by w given
state θ. So

F 1(w) = 1− Pr(wstop > w|θ = 1, uninformed)

and

F 0(w) = 1− Pr(wstop > w|θ = 0, informed) Pr(informed|θ = 0)

− Pr(wstop > w|θ = 0, uninformed) Pr(uninformed|θ = 0).

Disclosure stops either because the agent chooses to stop or it exogenously terminates.
Because exogenous termination is independent of θ, so

Pr(wstop > w|θ = 1, uninformed) = Pr(wstop > w|θ = 0, uninformed) = e−βw (1−GU(w))

and
Pr(wstop > w|θ = 0, informed) = e−βw (1−GI(w)) .

By definition, Pr(informed|θ = 0) = γ. Substituting these expressions into F 1(w)

and F 0(w). After some simplifying,

F 1(w) = 1− e−βw (1−GU(w)) (9)

and

F 0(w) = 1− e−βw (1− (1− γ)GU(w)− γGI(w)) . (10)

Finally, I derive properties of q(w) when either GU or GI is discontinuous.
Recall the definition q(w) = Pr(θ = 1|ws > w,wstop = w). Suppose at some

ŵ ≥ 0, either GU or GI is discontinuous. Then q(ŵ) can be written as

q(ŵ) =

(
1 + e−λŵ lim

ε→0

F 0(ŵ)− F 0(ŵ − ε)
F 1(ŵ)− F 1(ŵ − ε)

1− η
η

)−1
. (11)

Suppose only GU is discontinuous at ŵ. That is, limε→0GU(ŵ) − GU(ŵ − ε) > 0

and limε→0GI(ŵ) − GI(ŵ − ε) = 0. Plugging this into F 0(·) and then q(·), because
η = ρ(1−γ(1−η)), q(ŵ) = p(ŵ). Similarly, if only GI is discontinuous at ŵ, q(ŵ) = 0;
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if both are discontinuous, then q(ŵ) > 0 and its value depends on the ratio of the
size of the jump in GU and GI .

If q(ŵ) = 0, it must be that limε→0 (F 0(ŵ)− F 0(ŵ − ε)) / (F 1(ŵ)− F 1(ŵ − ε)) =

∞, which holds only if GI is discontinuous at ŵ and GU is continuous at ŵ. then if
q(ŵ) = p(ŵ), GI is continuous.

A.1.3 (II) Necessary conditions

(a) Equilibrium behaviors. First, I establish in Proposition 7 both types of the
agent’s behaviors in equilibrium.

Proposition 7. In any equilibrium, there exists 0 ≤ w <∞ such that the uninformed
agent stops with probability 1 at w and the informed randomizes over [0, w].

Proof of Proposition 7. The proof is organized as follows. First, I show in
Lemma 4 that if the uninformed agent were ever to stop at some finite time, he
stops with probability 1 at that time. Given the uninformed agent’s behavior, I then
show that the informed agent randomizes before the uninformed agent stops and
stops with probability 1 by the time the uniformed agent stops with probability 1

(Lemma 5 and Lemma 6). Finally, the informed agent’s equilibrium behavior then in
turn implies that the uninformed agent must stop in finite time (Lemma 9).

Denote by w0 = infw {GU(w) > 0} . That is, w0 is the first time the uninformed
agent stops. The following result shows that if the uninformed agent were to stop at
some finite time, he stops with probability 1 at that time. Intuitively, at the time
the uninformed agent stops, if the informed agent does not stop or stop continuously,
then the uninformed agent stopping with positive probability reveals that he is un-
informed, which dominates stopping at any time afterwards. If the informed agent
stops with positive probability, then the uninformed agent would rather stop with
positive probability at w0 + ε instead of pooling with the informed agent at w0.

Lemma 4. In any equilibrium, if w0 <∞, then GU(w0) = 1.

Proof. Suppose GI(w) is continuous at w0. Suppose the uninformed agent stops
at w0 with positive probability, that is, if GU(w) is discontinuous at w0. By (11),
q(w0) = p(w0). Because U(·) is increasing in q(·) and q(w) ≤ p(w) for all w ≥ 0, the
uniformed agent’s expected payoff from stopping at any w ≥ w0 is bounded above by
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the expected payoff evaluated at q(w) = p(w) for all w ≥ w0, denoted by U(w). The
derivative of U(w) with respect to w is given by

U
′
(w) = e−(β+r+λ)w

(
−(1 + ρ)rκ− eλw(1 + κ)rρ

)
< 0.

This means that if the uninformed agent stops with positive probability at w0, his
expected payoff from stopping at w0 is strictly higher than upper bound of his ex-
pected payoff from stopping at any w > w0. Therefore, if GI(w) is continuous at
w0, the uninformed agent’s best response is to stop with probability 1 at w0, that is,
GU(w0) = 1.

Suppose GI(w) is discontinuous at w0. Suppose the contrary GU(w0) < 1. Then
there exists w̃ > w0 (where w̃ can be infinity) such that GU(w̃) = 1. That is to say,
stopping at any w0 < w ≤ w̃ is on the equilibrium path.

Because the uninformed agent stops at w0, so either GU(w) is continuous at w0, in
which case q(w0) = 0, or GU(w) is discontinuous at w0, in which case q(w0) < p(w0).
By definition, GI(w) is right-continuous, which means limε→0GI(w0 + ε) = GI(w0).
Suppose the uninformed agent stops at w0+ε with positive probability, that is, GU(w)

is discontinuous at w0 + ε. Because stopping at w0 + ε is on the equilibrium path,
limε→0 q(w0 + ε) = limε→0 p(w0 + ε) = p(w0) > q(w0).26 This implies limε→0 U(w0 +

ε) = κ+ limε→0 q(w0 + ε) > κ+ q(w0) = U(w0).
Therefore, ifGI(w) is discontinuous at w0, then for the uninformed agent, stopping

at w0 is strictly dominated by stopping with positive probability at w0 + ε, which
contradicts the definition of w0.

Following Lemma 4, define w as the time GU(w) jumps up to 1. That is,

w := inf {w : GU(w) = 1} .

Note that w ∈ [0,∞]. Lemma 4 says that either the uninformed agent never stops
(w = ∞), or the uninformed agent does not stop at any w ∈ [0, w) and stops with

26To be specific, because stopping at w0 + ε is on the equilibrium path, for the uninformed agent,
stopping with positive probability at a time the informed agent doesn’t reveals that the agent is
uninformed, that is, limε→0 q(w0 +ε) = limε→0 p(w0 +ε). If stopping at w0 +ε is off the equilibrium
path, the decision maker’s belief q(w0 + ε) does not necessarily need to be p(w0 + ε).
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probability 1 at w. Then (9) and (10) become

F 1(w) =

1− e−βw w ∈ [0, w)

1 w = w
(12)

and

F 0(w) =

1− e−βw (1− γGI(w)) w ∈ [0, w)

1 w = w
. (13)

The following result establishes that if the uninformed agent were to stop in finite
time, that is, w <∞, the informed agent does not stop at w > w as doing so reveals
himself to be the informed agent.

Lemma 5. In any equilibrium, if w <∞, then GI(w) = 1 for all w ≥ w.

Proof. By the definition of w, GU(w) = 1 for all w ≥ w. If the informed agent stops
at any any w > w, then the decision maker’s belief about the agent if disclosure stops
at w > w is that the agent is informed—because the uninformed agent has stopped
with probability 1 by time w. From the perspective of time w, if the informed agent
stops at w, his expected payoff is κ + q(w), where q(w) > 0. If the informed agent
stops at any w > w, his expected payoff is

κ

(∫ w

w

λe−(r+λ+β)(s−w)ds+

∫ w

w

βe−(r+λ+β)(s−w)ds+ e−(r+λ+β)(w−w)
)
< κ < κ+ q(w).

Therefore, stopping at any w > w is dominated by stopping at w. This implies that
the informed agent stops with probability 1 by w, that is, GI(w) = 1.

Lemma 5 establishes the informed agent’s behavior at and after w. The following
result establishes the informed agent’s behavior before the uninformed agent stops—
the informed agent is indifferent . Intuitively, given that the uninformed agent does
not stop in [0, w), if the informed agent stops with a strictly positive probability
in [0, w), it reveals that the agent is informed. So the informed agent must stop
continuously. If there exists an interval of time during which the informed agent does
not stop, then stopping in this interval with positive probability reveals the agent
is uninformed. This means the uninformed agent would deviate to stopping in this
interval. The following lemma formalize this intuition.
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Lemma 6. In any equilibrium, GI(w) is (i) continuous and (ii) strictly increasing in
w for w ∈ [0, w).

Proof. Part (i). Suppose there exists ŵ ∈ [0, w) such that GI(w) is discontinuous.
That is, limε→0GI(ŵ − ε) < GI(ŵ).27 By (11), q(ŵ) = 0. So from the perspective of
time ŵ, the informed agent’s expected payoff from stopping at ŵ is κ. If the informed
agent stops at ŵ + ε for ε > 0 small, the decision maker’s belief is q(ŵ + ε) > 0.
The informed agent’s expected payoff is then κ + limε→0 q(ŵ + ε) > κ. Therefore,
stopping at ŵ is dominated by stopping at ŵ+ ε, which contradicts the premise that
the informed agent stops at ŵ with positive probability.

Part (ii). Suppose there exists an interval [w1, w2] with 0 ≤ w1 < w2 < w such
that GI(w) is constant for w ∈ [w1, w2]. In words, the informed agent does not stop
at any w ∈ [w1, w2]. Let w̃ be the supremum of w2 for which over [w1, w2], GI(w)

is constant. There are two cases. Either GI(w) is constant with a value strictly less
than 1, or GI(w) is constant with value 1.

First, consider the case where GI(w) < 1 for w ∈ [w1, w̃]. By Lemma 4, the
uninformed agent does not stop in [w1, w̃] either. So if disclosure stops in [w1, w̃], it
can only be due to exogenous termination, which is uninformative of the state. The
decision maker’s belief that θ = 1 if disclosure stops at any w ∈ [w1, w̃] is

q(w) =
η

η + e−λw (1− γGI(w1))) (1− η)
,

which means q′(w) = λ(1 − q(w))q(w). Given q(w) is differentiable in w for w ∈
(w1, w̃), the informed agent’s expected payoff from stopping at w ∈ [w1, w̃] is differ-
entiable for w ∈ (w1, w̃) with derivative proportional to

q′(w)− rκ− (r + λ) q(w) < 0,

which means V (w̃) < V (w1). By part (i), GI(w) is continuous in w which means V (w)

is continuous in w for a neighborhood around w̃, w ∈ (w̃, w̃+ε). So limε→0 V (w̃+ε) =

V (w̃) < V (w1). In words, stopping at any w ∈ (w̃, w̃ + ε) is dominated by stopping
at w1, which means GI(w) is constant over the interval [w̃, w̃ + ε]. This contradicts
the definition of w̃.

Next, consider the case where GI(w) = 1 for w ∈ [w1, w̃]. Then GI(w) = 1 for all
27In the case of ŵ = 0, GI(ŵ) = GI(0) > 0.
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w ≥ w1. Then for the uninformed agent, stopping with positive probability at any
w > w1 reveals that the agent is uninformed. By the same argument as in Lemma 4,
stopping with probability 1 at w is dominated by stopping with positive probability
at any w ∈ (w1, w̃] where w̃ < w. This contradicts the definition of w.

It follows from Lemma 6 that the informed agent must stop continuously in [0, w)

and this is true regardless of whether w is finite or not. In other words, the informed
agent must be indifferent with respect to stopping at any w ∈ [0, w]. It follows from
the following lemma that while the informed agent is indifferent between stopping at
w and w + ε, the uninformed agent strictly prefers stopping at w + ε.

To simplify notation, define

∆V (w) := lim
ε→0

V (w + ε)− V (w)

ε
and ∆U(w) := lim

ε→0

U(w + ε)− U(w)

ε
.

Lemma 7. Fix any w ≥ 0 and ε > 0. If ∆V (w) ≥ 0, then ∆U(w) ≥ 0. Moreover,
if limε→0 q(w + ε) > 0, ∆V (w) ≥ 0 implies ∆U(w) > 0.

Proof. From the perspective of w, if the agent (informed and uninformed) stops at
w, he gets payoff κ+ q(w). If informed agent stops at w + ε, his expected payoff is

(
1− e−λε

)
e−βεκ+ e−λε

(
1− e−βε

)
(κ+ q(w + ε)) + e−λεe−βεe−rε (κ+ q(w + ε)) .

Using a Taylor expansion e−rε = 1− rε and ignoring terms with orders ε2 and higher,

∆V (w) = −rκ− lim
ε→0

q(w + ε)(r + λ) + lim
ε→0

q(w + ε)− q(w)

ε
.

If uninformed agent stops at w + ε, his expected payoff is

(1− p(w))
(
1− e−λε

)
e−βεκ

+
(
(1− p(w)) e−λε + p(w)

) (
1− e−βε

)
(κ+ q(w + ε))

+
(
(1− p(w)) e−λε + p(w)

)
e−βεe−rε (κ+ q(w + ε)) .

Then

∆U(w) = −rκ− (r + λ) lim
ε→0

q(w + ε) + λp(w) lim
ε→0

q(w + ε) + lim
ε→0

q(w + ε)− q(w)

ε
.
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Recall that p(w) > 0. So if ∆V (w) ≥ 0, then ∆U(w) ≥ 0. Moreover, if limε→0 q(w +

ε) > 0, ∆U(w) > 0.
Also, ∆V (w) ≥ 0 implies

lim
ε→0

q(w + ε)− q(w)

ε
≥ rκ+ lim

ε→0
q(w + ε)(r + λ) > 0,

which implies limε→0 q(w + ε) > q(w). Therefore, if q(w) > 0, limε→0 q(w + ε) ≥
q(w) > 0.

Given that the informed agent is indifferent and that GI(w) is continuous in w,
q(w) > 0. So ∆V (w) = 0 implies ∆U(w) > 0.

Lemma 8. In any equilibrium, GI(w) is twice differentiable in w for all w ∈ (0, w).

Proof. First, by the Lebesgue’s theorem (see, for example, Royden and Fitzpatrick,
1988), because GI(w) is continuous and monotone so it is almost everywhere differ-
entiable in w for w ∈ (0, w). This means q(w) is continuous and almost everywhere
differentiable in w. Note that V (·) is continuous in w and q(·). It follows from
Lemma 6 that the informed agent is indifferent in w ∈ [0, w] which implies V (·) is
constant in w for w ∈ [0, w]. That is, limε→0 V (w+ ε) = limε→0 V (w− ε) = V (w) for
all w. This implies

lim
ε→0

q(w + ε)− q(w)

ε
= lim

ε→0

q(w)− q(w − ε)
ε

= rκ+ (r + λ)q(w),

which means q(w) is everywhere differentiable in w.

q′(w) = rκ+ (r + λ)q(w). (14)

By (13), F 0(·) is a differentiable function of GI(w) and w and is therefore almost
everywhere differentiable in w. Denote the derivative of F 0(w), whenever exists, by
f 0(w), and the derivative of F 1(w) is f 1(w) = βe−βw. Then the decision maker’s
belief that θ = 1 is

q(w) =
βe−βwη

βe−βwη + e−λwf 0(w)(1− η)
, (15)

where f 0(w) = (1− γ)βe−βw + γ
[
G′I(w)e−βw + βe−βw(1−GI(w))

]
. Because q(w) is

everywhere differentiable in w, f 0(w) and therefore G′I(w) is everywhere differentiable
in w.
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Plugging (15) into (14), one obtains a second-order differential equation in GI(w),
G′′I (w) = G (GI(w), G′I(w), w), where G is given by

G (GI(w), G′I(w), w) (16)

=βG′I(w)− βρ

ρ− η

(
r(1− η) + eλwη

(
rκ

(
η + e−λw (1− η)

η

)2

+ r + λ

))

+ r

(
1 + 2κ

(
η + e−λw(1− η)

η

))
(βGI(w)−G′I(w))

− rκe−λw(ρ− η)

βρη
(βGI(w)−G′I(w))

2
.

Recall that given that disclosure starts at t and given the agent’s equilibrium starting
strategies, ρ = ρ(t) and η = µ, which is the same G given in footnote 12.

The following result establishes that the informed agent cannot be indifferent for
all w ≥ 0. In other words, disclosure must stop in finite time with probability 1.

Lemma 9. In any equilibrium, w <∞.

Proof. Recall that by Lemma 8, in equilibrium, q′(w) = rκ+(r+λ)q(w) for w ∈ (0, w).
This means q(w) must increase exponentially in w. In equilibrium, q(w) is bounded
above by p(w) < 1 for all w ≥ 0. In other words, there does not exist q(w) such that
q′(w) = rκ+ (r + λ)q(w) for all w ≥ 0. This implies w <∞.

(b) Divinity. By Proposition 7, both types of agent stop by w < ∞. This means
that stopping at w > w is off the equilibrium path. First, I show that if an equilibrium
survives the divinity refinement, the decision maker’s belief that θ = 1 if disclosure
stops off-path at w > w is equal to the uninformed agent’s belief that θ = 1, p(w).
Next, I show that the informed agent’s probability of stopping must be continuous
for all w ∈ [0, w].

Lemma 10. In a divine equilibrium, the decision maker’s belief that θ = 1 if disclo-
sure stops at w > w is q(w) = p(w) for w ≥ 0.

Proof. From the perspective of time w, the agent’s expected payoff is given by V (w)

and U(w) where both the uninformed agent’s and the decision maker’s belief that
θ = 1 at w is given by p(w). It follows from Lemma 7 that for any decision maker’s
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belief q(w) for w > w, if V (w) increases in w, then U(w) increases in w. That is,
if the informed agent finds it optimal to deviate from stopping at w to stopping at
w > w, the uninformed agent also finds it optimal to deviate. As mentioned in
the paper, the divinity refinement prescribes that the decision maker’s off-path belief
should assign zero weight to the type of agent that has less incentive to deviate. The
result follows.

Lemma 11. In a divine equilibrium, for any w ≥ 0, q(w) = p(w). This means GI(w)

is continuous at w = w.

Proof. By Lemma 10, from the perspective of time w, if the uninformed agent stops
at w, his expected payoff is

κ+ q(w).

By Lemma 10, limε→0 q(w + ε) = p(w), and if the uninformed agent stops at w + ε

for ε > 0 small, his expected payoff is

lim
ε→0

(1− p(w))
(
1− e−λε

)
κ+
(
(1− p(w)) e−λε + p(w)

)
e−rε (κ+ q(w + ε)) = κ+p(w).

This implies for any w ≥ 0, κ + q(w) = κ + p(w): because if q(w) < p(w), the
uninformed agent finds it profitable to deviate to stopping at w + ε, violating the
definition of w.

For w = 0, GI(w) = 1 for all w ≥ 0 and is thus continuous at w = 0 by definition.
For w > 0, at w,

Pr(wstop = w|θ = 1) = 1

and
Pr(wstop = w|θ = 0) = (1− γ) · 1 + γ(GI(w)−GI(w

−)),

where GI(w
−) = limε→0GI(w − ε) is the left limit of GI at w. Recall that γ is

the probability that the agent is informed at the beginning of the continuation game
conditional on θ = 0, and is given by η = ρ(1− γ(1− η)). Therefore,

q(w) =
η

η + e−λw ((1− γ) + γ(GI(w)−GI(w
−))) (1− η)

.

Thus, q(w) = p(w) if and only if GI(w) = GI(w
−).
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Lemma 12. In any divine equilibrium, w = 0 if and only if ρ = η. So for any ρ > η,
w > 0.

Proof. By Lemma 10, q(w) = p(w). Suppose w = 0, then GI(0) = 1 and GU(0) = 1

for all w ≥ 0. Then F 1(0) = F 0(0) = 1 (recall that F θ(w) is the probability that
disclosure stops by w conditional on state θ). This means

q(w) = q(0) =
(F 1(0)− 0)η

(F 1(0)− 0)η + e−λ·0(F 0(0)− 0)(1− η)
= η.

On the other hand, p(w) = ρ(0) = ρ. So for w = 0, q(w) = p(w) if and only if ρ = η.
Therefore, for any ρ > η, w > 0.

(c) Boundary conditions. By Lemma 6 (i), GI(0) = 0. By Proposition 7,
GI(w) = 1. By Lemma 11, GI(w) is continuous for all w ∈ [0, w] and q(w) = p(w),
which implies

lim
ε→0

q(w − ε) = q(w) = p(w).

Writing out p(w) = q(w),

ρ

ρ+ e−λw(1− ρ)
=

βη

βη + e−λw ((1− γ)β + γ (G′I(w) + β(1−GI(w)))) (1− η)
.

Because GI(w) = 1, the above equality implies

G′I(w) = 0.

To sum up, the boundary conditions are therefore given by GI(0) = 0, GI(w) = 1,
and G′I(w) = 0.

Therefore, in any equilibrium, for all w ∈ [0, w],

f 1(w) = βe−βw

and
f 0(w) = (1− γ)βe−βw + γ

(
G′I(w)e−βw + βe−βw(1−GI(w))

)
.

Substituting these expressions for f 1(w) and f 0(w) into (15), the decision maker’s
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belief that θ = 1 when disclosure stops at w ∈ [0, w] can be written as

q(w) =
βη

βη + e−λw ((1− γ)β + γ (G′I(w) + β(1−GI(w)))) (1− η)
. (17)

A.1.3 (III) Existence and uniqueness

The following theorem establishes existence and uniqueness of a solution to the de-
sired boundary value problem. Moreover, this unique solution to the boundary value
problem is an equilibrium.

Theorem 2. There exists a unique solution, w∗ and G∗I(w), to the following boundary
value problem: for all w ∈ [0, w∗],

G′′I (w) = G (GI(w), G′I(w), w), GI(0) = 0, GI(w
∗) = 1, and G′I(w

∗) = 0, (BVP)

where G is given by (16).

To prove this, I first present a useful lemma that establishes equivalence between
two boundary value problems (or initial value problems).

Lemma 13. There exists 0 < wmax <∞ such that for any w ∈ (0, wmax), there exists
a unique solution to the initial value problem (BVP-q): for all w ∈ [0, w],

q′(w) = rκ+ (r + λ)q(w), q(w) = p(w) (BVP-q)

and a unique solution to the initial value problem (BVP-1): for all w ∈ [0, w],

G′′I (w) = G (GI(w), G′I(w), w), GI(w) = 1 and G′I(w) = 0. (BVP-1)

Moreover, given the solution to (BVP-1), the corresponding q(w) given by (17) solves
(BVP-q) and vice versa.

Proof. First, I show these two initial value problems are equivalent.
Equation (17) links GI(w) with q(w). In equilibrium, the informed agent’s in-

difference condition V ′(w) = 0 reduces to q′(w) = rκ + (r + λ)q(w), which is the
differential equation in (BVP-q). By (17), this differential equation is equivalent to
the differential equation in (BVP-1). Moreover, by (17), the boundary conditions
GI(w

∗) = 1 and G′I(w∗) = 0 imply q(w∗) = p(w∗).
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Next, I derive conditions under which each initial value problem admits a unique
solution.

By the Picard-Lindelöf Theorem (see, for example, Teschl, 2012, Theorem 2.2),
for any w > 0, (BVP-q) has a unique solution. In fact, the solution admits a closed
form. To emphasize this solution depends on w, denote it by q(w;w), where

q(w;w) =

(
p(w) +

rκ

r + λ

)
e−(r+λ)(w−w) − rκ

r + λ
. (18)

For (BVP-1), because GI(w) is twice differentiable for w ∈ (0, w), so G′(w) <∞
and G(w) < ∞ for all w ∈ (0, w). By (17), this means that there does not exists
w ∈ (0, w) such that q(w) = 0. If (BVP-1) admits a solution, w must be such that
q(w) > 0 for all w ∈ [0, w]. This means q(w;w) > 0 for all w ∈ [0, w]. I now derive
conditions under which q(w;w) > 0 for all w ∈ [0, w].

By (18), q(w;w) is strictly increasing in w and q(w;w) = p(w) > 0, so q(w;w) > 0

for all w as long as q(0;w) > 0.

Claim 1. There exists a unique wmax > 0 such that q(0;w) > 0 if and only if w < wmax.

Proof of the claim. Plugging in w = 0 into (18),

q(0;w) =

(
p(w) +

rκ

r + λ

)
e−(r+λ)w − rκ

r + λ
.

Then
lim
w→0

q(0;w) = q(0; 0) = ρ > 0

and
lim
w→∞

q(0;w) = − rκ

r + λ
< 0.

It can be readily verified that the derivative of q(0;w) with respect to w is strictly
negative. Because q(0;w) is continuous in w, by the intermediate value theorem,
there exists a unique 0 < wmax < ∞ such that q(0;wmax) = 0, q(0;w) > 0 for all
w < wmax, and q(0;w) < 0 for all w > wmax.

Therefore, by the Picard-Lindelöf Theorem, for all w < wmax, there exists a unique
solution to (BVP-1).

Lemma 13 is useful because (BVP-q) has a closed-form solution. By exploiting
the relationship between GI(w) and q(w) using Lemma 10, one obtains properties of
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GI(w) that are otherwise harder to derive.

Lemma 14. Let GI(w;w) be the (unique) solution to (BVP-1) for some w ∈ (0, wmax).
There exists a unique w∗ ∈ (0, wmax) such that GI(0;w∗) = 0.

Proof. By Lemma 13, I derive properties of the (unique) solution to (BVP-1) through
(18) via (17). Equate (18) with (17),

G′I(w;w) = βGI(w;w)− βρ

ρ− η

(
1− η + eλwη

(
1− 1

q(w;w)

))
. (19)

Note that this condition is in itself a differential equation in GI(w;w) and the solution
to this differential equation with GI(w;w) = 1 is the solution to (BVP-1) for a fixed
w. More specifically, the initial value problem, (BVP-2),

G′I(w;w) = βGI(w;w)− βρ

ρ− η

(
1− η + eλwη

(
1− 1

q(w;w)

))
, GI(w;w) = 1

(BVP-2)
is equivalent to (BVP-q) and thus is equivalent to (BVP-1). Define

H(w;w) :=
βρ

ρ− η

(
1− η + eλwη

(
1− 1

q(w;w)

))
. (20)

The differential equation (19) becomes

G′I(w;w) = βGI(w;w)−H(w;w),

which has a closed-form solution, denoted by

GI(w;w) = ceβw − eβw
∫ w

0

e−βsH(s;w)ds,

where c ∈ R is an integration constant to be determined. By the boundary condition
GI(w;w) = 1,

1 = ceβw − eβw
∫ w

0

e−βsH(s;w)ds =⇒ c = e−βw +

∫ w

0

e−βsH(s;w)ds.
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Therefore,

GI(w;w) =

(
e−βw +

∫ w

0

e−βsH(s;w)ds

)
eβw − eβw

∫ w

0

e−βsH(s;w)ds. (21)

By definition, for all w ∈ (0, wmax) and all w < w, H(w;w) <∞. Set w = 0,

GI(0;w) = e−βw +

∫ w

0

e−βsH(s;w)ds.

The goal is to show there exists a unique w∗ ∈ (0, wmax) such that GI(0;w∗) = 0.
The proof uses the intermediate value theorem.

Take the derivative GI(0;w) with respect to w,

d

dw
GI(0;w) = −βe−βw + e−βwH(w;w) +

∫ w

0

e−βs
∂

∂w
H(s;w)ds < 0. (22)

This derivative is negative because H(w;w) = β; and because ∂q(s;w)/∂w < 0 for
s ≤ w, ∂H(s;w)/∂w < 0.

Let w ↓ 0. Then

lim
w↓0

GI(0;w) = lim
w↓0

e−βw + lim
w↓0

∫ w

0

e−βsH(s;w)ds = 1.

Let w ↑ wmax. Then

lim
w↑wmax

GI(0;w) = e−βwmax + lim
w↑wmax

∫ w

0

e−βsH(s;w)ds.

Claim 2. The following statement is true:

lim
w↑wmax

∫ w

0

e−βsH(s;w)ds = −∞.

Proof of the claim. Substituting in the definition of H(s;w), given by (20),

lim
w↑wmax

∫ w

0

e−βsH(s;w)ds = lim
w↑wmax

∫ w

0

e−βs
βρ

ρ− η
(
1− η + eλsη

)
ds

− lim
w↑wmax

βρη

ρ− η

∫ w

0

e−βseλs

q(s;w)
ds.
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The first limit is finite. It suffices to show the second limit is infinite. Because
q(s;w) > 0 for all s ∈ (0, w),

lim
w↑wmax

∫ w

0

e−βseλs

q(s;w)
ds ≥ lim

w↑wmax

∫ w

0

e−βw

q(s;w)
ds.

Because limw↑wmax e
−βw = e−βwmax is finite, it suffices to show

lim
w↑wmax

∫ w

0

1

q(s;w)
ds =∞.

Substituting in the definition of q(s;w) given by (18), this integral has a closed-form
solution and

lim
w↑wmax

∫ w

0

1

q(s;w)
ds = lim

w↑wmax

1

rκ
ln

(
ρ(r + λ)

ρ(r + λ)− rκ (e(r+λ)w − 1) (ρ+ e−λw (1− ρ))

)
.

Recall that wmax is given by q(0;wmax) = 0 (and q(0;wmax) > 0 for w < wmax). It
follows directly from rearranging the equation q(0;wmax) = 0 that as w increasing to
wmax, the denominator above goes to zero from above. That is,

lim
w↑wmax

ρ(r + λ)− rκ
(
e(r+λ)w − 1

) (
(1− ρ) e−λw + ρ

)
= 0+.

The result follows.

It follows from the claim that limw↑wmax GI(0;w) = −∞. By the intermediate
value theorem, there exists a unique w∗ ∈ (0, wmax) such that GI(0;w∗) = 0.

Lemma 15. Denote G∗I(w) = GI(w;w∗). Then the pair w∗ and G∗I(w) is the unique
solution to (BVP).

Proof. Note that (BVP) subsumes (BVP-1) with the additional boundary condition
GI(0) = 0. By Lemma 14, G∗I(w) is the solution to (BVP-1) such that G∗I(0) = 0.
The result follows.

To sum up, by Lemma 14, w∗ is unique. By Lemma 13 and Lemma 15, the pair
w∗ and G∗I(w) solves (BVP). The theorem follows.
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A.1.3 (IV) Sufficient conditions

To establish sufficiency, one needs to show that the (unique) solution to the boundary
value problem (BVP) is a proper probability distribution and satisfies the equilibrium
conditions. Because the solution must satisfy the boundary conditions, GI(0) = 0

and GI(w) = 1, to show the solution is a proper probability distribution function, it
remains to show the solution is strictly increasing. This is formalized in the following
lemma.

Lemma 16. Let the pair w∗ and G∗I(w) be the solution to the boundary value problem
(BVP). Then G∗I(w) is strictly increasing in w for w ∈ [0, w∗].

Proof. By Lemma 13, I consider the solution to (BVP-q). Take the derivative of (19)
with respect to w on both sides,

βG∗′I (w) = G∗′′I (w) +
βρ

ρ− ηηe
λw

(
λ

(
1− 1

q∗(w)

)
+
q∗′(w)

q∗(w)2

)
.

Because at w = w∗, G∗′I (w∗) = 0 and q∗(w∗) = p(w∗), moreover, q∗′(w) = rκ + (r +

λ)q∗(w), so

G∗′′I (w∗) = − βρ

ρ− ηηe
λw∗
(
λp(w∗)2 + rκ+ rp(w∗)

p(w∗)2

)
< 0,

where the inequality follows from ρ > η. Suppose there exists ŵ < w∗ such that
G∗′I (ŵ) = 0. Then

G∗′′I (ŵ) = − βρ

ρ− ηηe
λŵ

(
λ

(
1− 1

q∗(ŵ)

)
+
rκ+ (r + λ)q∗(ŵ)

q∗(ŵ)2

)
. (23)

As is shown in the proof of Lemma 13, q(ŵ) > 0, so rκ+(r+λ)q(ŵ) > λ (1− q∗(ŵ)) q∗(ŵ).
This implies the term in the parenthesis of (23) is positive. It then follows from ρ > η

that G∗′′I (ŵ) < 0.
This says that if there exists ŵ < w∗ such that G∗′I (ŵ) = 0, then it must be

G∗′′I (ŵ) < 0. This is a contradiction because as shown, G∗′I (w) decreases to 0 at w∗,
so if there exists a point in time before w∗ at which G∗′I (w) is equal zero, it must be
either increasing to zero from below or tangent to zero.
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A.1.4 Proof of Lemma 2

The proof is subsumed by the proof of Lemma 10 and Lemma 11 above.

A.1.5 Proof of Lemma 3

I first prove the result for η.
I first show that for a fixed w, the solution to (BVP-2) is increasing in η. Let

GI(w;w; η) denote the solution to (BVP-2) given w and η. For any two η1 and η2

where η1 < η2, the boundary condition in (BVP-2) says GI(w;w; η1) = GI(w;w; η2) =

1. Now I show the differential equation (19) in (BVP-2),

G′I(w;w; η) = βGI(w;w; η)− βρ

ρ− η

(
1− η + eλwη

(
1− 1

q(w;w)

))
is increasing in η for a fixed GI(w;w; η) for all w < w. The derivative of the right-hand
side of the differential equation with respect to η is equal to

− βρ

(ρ− η)2

(
1− ρ

(
1 + eλw

(
1

q(w;w)
− 1

)))
> 0,

where the inequality follows from plugging in the definition of q(w;w) given by (18).
By a standard comparison argument (see Teschl, 2012, Theorem 1.3), the solution to
(BVP-2), GI(w;w; η), is decreasing pointwise in η for [0, w].

Let w∗(η1) be the (unique) solution such that GI(0;w∗(η1); η1) = 0. The above
argument implies GI(0;w∗(η1); η2) < 0. Let w∗(η2) be the (unique) solution such that
GI(0;w∗(η2); η2) = 0. Recall that by (22), for a fixed η, ∂GI(0;w; η)/∂w < 0. So it
must be that w∗(η2) < w∗(η1).

The proof for ρ is analogous. Only that it needs to be shown that the differential
equation (19) in (BVP-2) is decreasing in ρ. Below is the proof.

By definition (20), differential equation (19) can be written as,

G′I(w;w; ρ) = βGI(w;w; ρ)−H(w;w; ρ).

Showing this differential equation is decreasing in ρ for a fixedGI(w;w; ρ) is equivalent
to showing H(w;w; ρ) is increasing in ρ for a fixed GI(w;w; ρ). Take the derivative of
H with respect to w. Because q(w;w) is a solution to (BVP-q), so ∂q(w;w; ρ)/∂w =
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rκ+ (r + λ)q(w;w; ρ), then

∂

∂w
H(w;w; ρ) = eλw

βρη

ρ− η

(
λ+

rκ

q(w;w; ρ)2
+

r

q(w;w; ρ)

)
.

Because q(w;w; ρ) is increasing in ρ and βρη/ (ρ− η) is decreasing in ρ, so ∂H(w;w; ρ)/∂w <

0. Because H(w;w; ρ) = β for all ρ, by a standard comparison argument (see Teschl,
2012, Theorem 1.3), H(w;w; ρ) is increasing pointwise in ρ. The result follows.

A.1.6 Proof of Proposition 1

Recall that w∗ ≥ 0 and ρ ≥ η. Proving Proposition 1 is equivalent to showing w∗ = 0

if and only if ρ = η. Fix ρ = η. The uninformed agent’s expected payoff from waiting
w ≥ 0 to disclose is

U(w) =e−βw
(
ρ+ e−λw(1− ρ)

)
e−rw

(
κ+

ρ

ρ+ e−λw(1− ρ)

)
+ e−βw(1− ρ)

∫ w

0

λe−λse−rsκds

+

∫ w

0

βe−βτ
(
ρ+ e−λτ (1− ρ)

)
e−rτ

(
κ+

ρ

ρ+ e−λτ (1− ρ)

)
dτ

+

∫ w

0

βe−βτ
(

(1− ρ)

∫ τ

0

λe−λse−rsκds

)
dτ.

It can be readily verified that U(w) is strictly decreasing in w for all w ≥ 0 and
therefore maximized at w = 0. The same calculation and conclusion apply to the
informed agent’s expected payoff V (w).

A.1.7 Proof of Theorem 1.A

The conditions under which τ ∗ ≥ 0 exists are stated in Proposition 2 and Proposi-
tion 3. I establish some preliminary expressions and notations below; the proofs of
the theorem is subsumed by Proof of Proposition 2 and Proof of Proposition 3.

Preliminaries

Suppose disclosure starts at t. Recall that the continuation stopping game can be
parameterized by the uninformed agent’s belief that θ = 1 at the decision maker’s
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belief that θ = 1 at the beginning of the continuation game. With a slight abuse of
notation, denote the equilibrium waiting time in the continuation stopping game by

w∗(t) = w∗(ρ(t), η(t)).

It is convenient to define the decision maker’s belief that θ = 1 when disclosure stops
at w explicitly as a function of the disclosure starting time t. With a slight abuse of
notation, denote this function by the same letter as before, q. Then for w ≤ w∗(t),

q(w,w∗(t), ρ(t)) = q(w, t) =

(
ρ(t)

ρ(t) + e−λw∗(t)(1− ρ(t))
+

κr

r + λ

)
e−(r+λ)(w

∗(t)−w)− κr

r + λ
.

For w > w∗(t), q(w, t) = p(t) (off-path belief).
In equilibrium, V (w) is maximized at w = w∗. Define the informed agent’s equi-

librium payoff in this continuation game as V̂ (w∗, ρ),

V̂ (w∗, ρ) :=e−rw
∗
e−λw

∗
e−βw

∗
(κ+ q(w∗, w∗, ρ))

+

∫ w∗

0

e−rsλe−λse−βsκds+

∫ w∗

0

e−rse−λsβe−βs(κ+ q(s, w∗, ρ))ds. (24)

Similarly, define the uninformed agent’s equilibrium payoff of this continuation game
as Û(w∗, ρ), that is,

Û(w∗, ρ) := (1− ρ)V̂ (w∗, ρ) + ρÛ1(w
∗, ρ), (25)

where

Û1(w
∗, ρ) = e−rw

∗
e−βw

∗
(κ+ q(w∗, w∗, ρ)) +

∫ w∗

0

e−rsβe−βs(κ+ q(s, w∗, ρ))ds.

Define the informed agent’s equilibrium payoff as a function of starting time t as

V ∗(t) := V̂ (w∗(t), ρ(t)) = V̂ (0, ρ(t)), (26)

where the equality follows from the informed agent being indifferent over w ∈ [0, w∗(t)]

in the continuation game. Define the uninformed agent’s equilibrium payoff as a
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function of starting time t as

U∗(t) := Û(w∗(t), ρ(t)). (27)

The following lemma establishes some useful properties of V̂ and Û . The proof is
mostly algebraic and is relegated to the Online Appendix.

Lemma 17. For all feasible parameters,

∂V̂

∂ρ
> 0,

∂Û

∂ρ
> 0,

∂V̂

∂w∗
< 0, and

∂Û

∂w∗
< 0.

Expected payoffs in the starting game

Suppose η(t) = µ for all t ≥ 0. Therefore, w∗(t) = w∗(ρ(t), µ). By Lemma 3, w∗

is increasing in ρ which is increasing in t. By the Lebesgue’s Theorem, w∗(t) is
almost everywhere differentiable.28 Suppose the agent is uninformed at t = 0 and
has the opportunity to disclose at t = 0. His expected payoff from waiting till t to
start disclosing if he remains uninformed at t and starting immediately if he becomes
informed is

Y (t) = (1− µ)

∫ t

0

λe−λse−rsV ∗(s)ds+
(
(1− µ)e−λt + µ

)
e−rtU∗(t).

The derivative of Y with respect to t is proportional to y(t) where y(t) is defined as

y(t) := λ(1− ρ(t))(V ∗(t)− U∗(t)) + U∗′(t)− rU∗(t),

whenever differentiable. After some simplifying,

y(t) = ρ′(t)

(
(1− ρ(t))

∂V̂

∂ρ
+ ρ(t)

∂Û1

∂ρ

)
+

(
(1− ρ(t))

∂V̂

∂w∗
+ ρ(t)

∂Û1

∂w∗

)
w∗′(t)−rU∗(t).

(28)
Similarly, define the informed agent’s expected payoff from starting at t as

Z(t) = e−rtV ∗(t).

28Differentiability helps simplify notations but plays no role in the proofs.

53



The derivative is proportional to

z(t) = V ∗′(t)− rV ∗(t),

whenever differentiable.
Suppose the agent got opportunity at time t0 > 0. Let Y (t|t0) denote the un-

informed agent’s expected payoff from starting disclosure at t > t0 and Z(t|t0) the
informed. The following result establishes that the agent’s intertemporal incentive is
independent of the time at which he got the opportunity. Therefore, it is sufficient to
focus the analysis on the agent who got the opportunity to start disclosing at time 0.

Lemma 18. If Y (t) is increasing (decreasing), then Y (t|t0) is increasing (decreasing).
Similarly, if Z(t) is increasing (decreasing), then Z(t|t0) is increasing (decreasing).

Proof. I prove the case for the uninformed agent, the informed agent follows from the
same algebra. By definition, Y (t|t0) is given by

Y (t|t0) =(1− ρ(t0))

∫ t

t0

λe−λ(s−t0)e−r(s−t0)V ∗(s)ds

+
(
(1− ρ(t0))e

−λ(t−t0) + ρ(t0)
)
e−r(t−t0)U∗(t).

Take the derivative with respect to t,

Y ′(t|t0) =e−r(t−t0)
er(t−t0)ρ(t)

(1− ρ(t0))e−λ(t−t0) + ρ(t0)

· (ρ′(t) (V ∗(t)− U∗(t)) + ρ(t) (U∗′(t)− rU∗(t))) .

where the first line is strictly positive and the second line is proportional to y(t). The
result follows.

A.1.8 Proof of Proposition 2

Immediate disclosure is an equilibrium if and only if Y (t) is decreasing in t for all
t ≥ 0 and Z(t) is decreasing in t for all t ≥ 0.

I derive sufficient conditions under which immediate disclosure is an equilibrium
if the waiting time in the continuation game is zero for all disclosure starting time. I
then show that under these conditions, immediate disclosure is an equilibrium if the
waiting time in the continuation game is the equilibrium waiting time.
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Intuitively, if the agent (informed and uninformed) is impatient enough that he
does not want to delay starting when waiting time is zero, he does not want to delay
starting when waiting time is longer.

Recall that U∗(t) = Û(w∗(t), ρ(t)) and V ∗(t) = V̂ (w∗(t), ρ(t)). Note that w∗(t) =

0 for all t ≥ 0 implies that q(0, t) = ρ(t), therefore,

Û(w∗(t), ρ(t)) = V̂ (w∗(t), ρ(t)) = κ+ q(0, t) = κ+ ρ(t).

Let Y0(t) denote the uninformed agent’s expected payoff from waiting till t if remains
uninformed and starting immediately if becomes informed. Then

Y0(t) = (1− µ)

∫ t

0

λe−λse−rs (κ+ ρ(s)) ds+
(
(1− µ)e−λt + µ

)
e−rt (κ+ ρ(t)) .

The derivative is proportional to

y0(t) = ρ′(t)− r(κ+ ρ(t)).

Therefore, Y0(t) is decreasing for all t ≥ 0 if and only if y0(t) ≤ 0 for all t ≥ 0. This
is true if (i) y′0(t) ≤ 0 for all t ≥ 0 and (ii) y0(0) ≤ 0. For condition (i), take the
derivative of y0(t) with respect to t, y′0(t) ≤ 0 for all t if and only if r/λ ≥ 1− 2ρ(t)

for all t. Because ρ(t) is increasing in t, it must be that

r

λ
≥ 1− 2µ.

By assumption µ ≥ 1/2, this condition is always satisfied. For condition (ii), set
y0(0) ≤ 0, then λ(1− µ)µ ≤ r(κ+ µ), that is,

r

λ
≥ (1− µ)µ

κ+ µ
. (29)

Therefore, Y0(t) is decreasing in t for all t ≥ 0 if (8) holds. For the informed agent,
Z0(t) = e−rtV ∗(t) = e−rt(κ+ρ(t)). The same condition (8) implies Z0(t) is decreasing
in t for all t ≥ 0. The following result shows if Y0(t) and Z0(t) are decreasing in t for
all t ≥ 0, Y (t) and Z(t) are decreasing in t for all t ≥ 0.

Lemma 19. If y0(t) ≤ 0, then y(t) ≤ 0 and z(t) ≤ 0.
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Proof. Let ỹ(w, ρ) be

ỹ(w, ρ) = λ(1− ρ)ρ

(
(1− ρ)

∂V̂ (w, ρ)

∂ρ
+ ρ

∂Û1(w, ρ)

∂ρ

)
− rÛ(w, ρ).

Evaluate ỹ(w, ρ) at the optimal w∗(t) and ρ(t) and denote the resulting ỹ(w∗(t), ρ(t))

by ỹ∗(t), that is,

ỹ∗(t) := ỹ(w∗(t), ρ(t))

= ρ′(t)

(
(1− ρ(t))

∂V̂

∂ρ
(w∗(t), ρ(t)) + ρ(t)

∂Û1

∂ρ
(w∗(t), ρ(t))

)
− rÛ(w∗(t), ρ(t)).

By Lemma 17, ∂V̂ /∂w∗ < 0, ∂Û1/∂w
∗ < 0; by Lemma 3, w∗ is increasing in ρ, which

is increasing in t, so w∗(t) is increasing in t. Therefore, y(t) < ỹ∗(t) for all t ≥ 0.
So it suffices to show ỹ∗(t) < 0 if y0(t) ≤ 0. Recall that y0(t) ≤ 0 if and only if
ρ′(t)− r(1 + ρ(t)) ≤ 0. So it reduces to showing the following claim.

Claim 3. Inequality ρ′(t)− r(κ+ ρ(t)) ≤ 0 implies

ρ′(t)

(
(1− ρ(t))

∂V̂

∂ρ
(w∗(t), ρ(t)) + ρ(t)

∂Û1

∂ρ
(w∗(t), ρ(t))

)
− rÛ(w∗(t), ρ(t)) < 0

and

ρ′(t)
∂V̂

∂ρ
(w∗(t), ρ(t))− rV̂ (w∗(t), ρ(t)) < 0.

The proof of the claim is mostly algebraic and is relegated to the Online Appendix.
It follows from Claim 3 that Y0(t) decreasing implies Y (t) decreasing (first inequality),
and that Z0(t) decreasing implies Z(t) decreasing (second inequality).

A.1.9 Proof of Proposition 3

For a fixed κ, if the proposed strategies under τ ∗(κ) are (part of) an equilibrium, the
following must be true. First, the uninformed agent’s expected payoff from starting
at t, Y (t), and the informed agent’s expected payoff from starting at t, Z(t), must be
decreasing for all t ≥ τ ∗(κ). Second, neither the uninformed nor the informed agent
wants to deviate to starting before τ ∗(κ). The goal is to derive sufficient conditions
under which there exists τ ∗(κ) such that both statements hold.
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Lemma 20. Fix parameters such that immediate disclosure is not an equilibrium.
There exists τ ∗(κ) > 0 such that Y (t) and Z(t) are both decreasing in t for all t ≥
τ ∗(κ).

Proof. If immediate disclosure is not an equilibrium, by contrapositive of Proposi-
tion 2, condition (8) does not hold. That is, Fix κ such that

κ < (λ/r)(1− µ)µ− µ. (30)

In this case, y0(t) is still (strictly) decreasing in t for all t ≥ 0: the condition that
implies y0(t) is decreasing is r/λ ≥ 1−2µ, which always holds by assumption µ ≥ 1/2.
However, if (8) does not hold, y0(0) > 0. Because y0(t) is continuous in t, and
limt→∞ y0(t) = limt→∞ ρ′(t)− r(κ+ ρ(t)) = −r(κ+ 1) < 0, there exists a τ0(κ) where
0 < τ0(κ) < ∞ such that y0(τ0(κ)) = 0 and y0(t) < 0 for all t > τ0(κ). Moreover,
τ0(κ) is unique because y0(t) is strictly decreasing in t. We have shown that y0(t) ≤ 0

implies y(t) < 0. So y(t) < 0 for all t ≥ τ0(κ).
If immediate disclosure is not an equilibrium, there must exists some t ≥ 0 such

that y(t) > 0. Let τ ∗(κ) := sup {t : y(t) ≥ 0}. By the argument above, τ ∗(κ) ≤
τ0(κ).

Next, I derive conditions on κ such that neither the uninformed nor the informed
agent wants to deviate to starting before τ ∗(κ).

Lemma 21. There exists 0 < κ ≤ (λ/r)(1− µ)µ− µ such that for all κ < κ,

e−rτ
∗(κ)V ∗(τ ∗(κ)) ≥ κ.

Proof. Recall that the informed agent is indifferent with respect to waiting times in
[0, w∗] in the continuation game. So for any starting time τ , V ∗(τ) = κ+ q(0, τ). So
if the informed agent does not want to deviate to starting before some τ , it must be
that e−rτ (κ+ q(0, τ)) ≥ κ, which is equivalent to q(0, τ) ≥ κ (erτ − 1) . The goal is
to show

q(0, τ ∗(κ)) ≥ κ
(
erτ

∗(κ) − 1
)
. (31)

Recall the definition of τ0(κ) from the proof of the previous lemma: τ0(κ) is such
that y0(τ0(κ)) = 0, that is

λ(1− ρ(τ0(κ)))ρ(τ0(κ))− r(κ+ ρ(τ0(κ))) = 0.
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Consider κ = 0. Because ρ(·) > µ > 0, the above equality implies τ0(0) < ∞.
Then τ ∗(0) ≤ τ0(0) < ∞. Because κ

(
erτ

∗(κ) − 1
)
is continuous in κ, as κ → 0,

κ
(
erτ

∗(κ) − 1
)
→ 0. Because in equilibrium, stopping disclosure is always on the

equilibrium path and with strictly positive probability, the stopping comes from an
uninformed agent who got terminated, so q(0, τ ∗(κ)) > 0 for all κ ≥ 0. Therefore,
the inequality (31) holds strictly at κ = 0. Because both q(0, τ ∗(κ)) and the right-
hand side of (31) are continuous in κ, there exists a neighborhood of 0 such that
q(0, τ ∗(κ)) > κ

(
erτ

∗(κ) − 1
)
.

Consider the solutions to q(0, τ ∗(κ)) = κ
(
erτ

∗(κ) − 1
)
. If there exists solutions to

this equation, define κ to be the smallest solution, so for all κ < κ, q(0, τ ∗(κ)) >

κ
(
erτ

∗(κ) − 1
)
. If there does not exist a solution, this means for all κ ∈ [0, (λ/r)(1−

µ)µ − µ), q(0, τ ∗(κ)) > κ
(
erτ

∗(κ) − 1
)
. In this case, define κ = (λ/r)(1 − µ)µ − µ.

The result follows.

A.2 Proofs for Section 4

A.2.1 Proof of Proposition 4

Because both types of the agent adopt the same starting strategy, the decision maker’s
belief that θ = 1 if disclosure starts at any time t (that is on the equilibrium path)
is µ. By Lemma 3, w∗ is increasing in ρ, which is increasing in τ , which means w∗ is
increasing in τ .

As the disclosure time τ increases, the uninformed agent’s belief that θ = 1 at the
beginning of the continuation stopping game is ρ = limτ→∞ ρ(τ) = 1; the decision
maker’s belief that θ = 1 is η = µ. One can obtain the upper bound w by solving the
boundary value problem (BVP) evaluated at ρ = 1.

A.3 Proofs for Section 5

A.3.1 Proof of Proposition 5

The proof is the same as the proof of Theorem 1.B (ii) as is thus omitted.
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A.3.2 Proof of Proposition 6

Let qD(w) denote the decision maker’s belief that θ = 1 conditional on no signals
arriving in [0, w]. By Bayes’ rule,

qD(w) =
η

η + e−λw(1− η)
. (32)

Given this belief qD(w), from the perspective of the beginning of the continuation
stopping game, denote the decision maker’s expected payoff from stopping at w by
D(w), then

D(w) =(1− η)

∫ w

0

e−rsλe−λse−βsds

+ (1− η)

∫ w

0

e−rse−λsβe−βs
(
1− (qD(s)− 0)2

)
ds

+ (1− η)e−rwe−λwe−βw
(
1− (qD(w)− 0)2

)
(33)

+ η

∫ w

0

e−rsβe−βs
(
1− (qD(s)− 1)2

)
ds

+ ηe−rwe−βw
((

1− (qD(w)− 1)2
))
.

Take the derivative of D(w) with respect to w. After simplifying,

D′(w) ∝ λ(1− qD(w))qD(w)2 − r (1− (1− qD(w))qD(w)) . (34)

Define

R(w; η) :=

(
e−λw (1− η) + η

e−λw (1− η)
+

(
η + e−λw(1− η)

η

)2
)−1

. (35)

Rearrange the right-hand side of (34) and substitute (32) for qD(w), D′(w) ≤ 0 if and
only if R(w; η) ≤ r/λ.

Claim 4. For any w and η, ∂R(w; η)/∂w and ∂R(w; η)/∂η have the same sign.

Proof. To facilitate the proof, note that qD(w) depends on both w and η. With a
slight abuse of notation, denote (32) by qD(w; η). Then R(w; η), defined in (36), can
be written as

R(w; η) =

(
1

1− qD(w; η)
+

1

qD(w; η)2

)−1
. (36)
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Then

∂R(w; η)

∂w
=
∂R(w; η)

∂qD

∂qD(w; η)

∂w
and

∂R(w; η)

∂η
=
∂R(w; η)

∂qD

∂qD(w; η)

∂η
.

By (32), ∂qD(w; η)/∂w > 0 and ∂qD(w; η)/∂η > 0. The result follows.

Claim 5. R(w; η) has the following properties.
(i) For all 0 < η < 1, R(w; η) is single-peaked in w: there exists a unique w∗R(η) =

arg maxw R(w; η) with w∗R(η) ≥ 0 such that R(w; η) is strictly increasing in w for
w ≤ w∗R(η) and strictly decreasing in w for w > w∗R(η).
(ii) There exists a unique 0 < ηR < 1 such that

(a) for all η < ηR, w∗R(η) > 0, w∗′R(η) < 0, and R(w∗R(η); η) is constant in η;
(b) for all η ≥ ηR, w∗R(η) = 0 and R(w∗R(η); η) = R(0; η) is decreasing in η;
(c) Moreover, w∗R(η) is continuous for all 0 < η < 1. That is, limη→ηR w

∗
R(η)→ 0.

(iii) For all 0 < η < 1, limw→∞R(w; η)→ 0.

Proof. These properties follow directly from operating on (35).
Specifically, for (ii) (a) and (c), if w∗R(η) is interior, namely, w∗R(η) > 0, w∗R(η) has

a closed form which can be obtained by solving ∂R(w; η)/∂w = 0. It follows from the
functional form of w∗R(η) that w∗′R(η) < 0 and limη→ηR w

∗
R(η)→ 0. By definition,

dR(w∗R(η); η)

dη
=
∂R(w∗R(η); η)

∂η
+
∂R(w∗R(η); η)

∂w

dw∗R(η)

dη
.

The second term on the right-hand side is zero because ∂R(w∗R(η); η)/∂w = 0. By
Claim 4, the first term ∂R(w∗R(η); η)/∂η = 0. Therefore, dR(w∗R(η); η)/dη = 0, which
means R(w∗R(η); η) is constant in η.

For (ii) (c), it follows from the definition (35) that R(0; η) =
(

1
1−η + 1

η2

)−1
and is

decreasing in η.

Part (i). It follows from Claim 5 (ii) that R(0; ηR) = maxη∈(0,1)R(w∗R(η); η). Denote
this maximum value by

∆ := R(0; ηR).

Then for all w ≥ 0 and 0 < η < 1, R(w; η) ≤ R(0; ηR) = ∆. This means if ∆ ≤ r/λ,

R(w; η) ≤ ∆, which means D′(w) < 0. (In fact, for any parameters, ∆ is a constant
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number is approximately 0.1916.)

Part (ii). Fix r/λ < ∆. The shape of D(w) depends on η. There are three cases.
Case 1. By Claim 5, for all η ≥ ηR, R(w; η) is decreasing in w for all w ≥ 0 and

is thus maximized at w = 0. Because R(0; η) is decreasing in η, there exists η > ηR

such that R(0; η) = r/λ and R(0; η) < r/λ (and therefore R(w; η) < r/λ) for all
η > η. This implies D′(w) ≤ 0 for all w ≥ 0 and is thus maximized at w = 0 for all
η ≥ η.

Case 2. By Claim 5, for all η < ηR, R(w; η) is single-peaked in w and is maximized
at w∗R(η) > 0. Because R(0; η) is decreasing in η, there exists η̃ < ηR such that there
exists a unique w∗DM(η) where R(w∗DM(η); η) = r/λ, R(w; η) < r/λ for w < w∗DM(η),
and R(w; η) > r/λ for w > w∗DM(η). This implies D(w) single-peaked in w is uniquely
maximized at w = w∗DM(η) > 0 for η ∈ [η̃, η).

Case 3. For all η < η̃, R(0; η) < r/λ and R(w; η) intersects with the line r/λ
twice. Denote these two intersections by wL(η) and wH(η) with wL(η) < wH(η). That
is, R(wL(η); η) = R(wH(η); η) = r/λ.

Moreover, R(w; η) < r/λ for w < wL(η) and w ≥ wH(η), and R(w; η) > r/λ for
w ∈ [wL(η), wH(η)). This means that D(w) decreases for w ∈ [0, wL(η)), increases
for w ∈ [wL(η), wH(η)), and decreases for w ≥ wH(η). Therefore, for each η < η̃,
D(w) has two local maxima, one at w = 0 and one at w = wH(η). To determine
which is the global maximizer, one can obtain D(wH(η)) by plugging in the closed
form expression for wH(η), and compare it with D(0) = 1 − (1 − η)η. It can be
shown that there exists η < η̃ such that D(wH(η)) < 1− (1− η)η for all η < η, and
D(wH(η)) ≥ 1−(1−η)η for all η ∈ [η, η̃). Then the optimal waiting time w∗DM(η) = 0

for η < η and w∗DM(η) = wH(η) for η ≥ η.
This concludes the proof. As an illustration, Figure 7 plots the function D(w) for

several values of η. The resulting optimal waiting time w∗DM(η) is given by Figure 6.
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