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I study a two-player continuous-time dynamic coordination game with observational learning. 
Each player has one opportunity to make a reversible investment with an uncertain return that is 
realized only when both players invest. Each player learns about the potential return by observing 
a private signal and the actions of the other player. In equilibrium, players’ roles as leader and 
follower are endogenously determined. Information aggregates in a single burst initially, then 
gradually through delayed investment and disinvestment over time. More precise signals lead to 
faster coordination conditional on initial disagreement, but might also increase the probability of 
initial disagreement.

1. Introduction

Startup fundraising often involves investment complementarities, with entrepreneurs seeking capital from multiple sources and 
investors. In such situations, coordination among investors might make an investment profitable when it would not have been so if 
undertaken by only one investor. During this process, investors often observe other investors’ investment decisions and learn about 
the potential profitability of the startup by deducing information from these behaviors. Moreover, in some cases, investors enjoy the 
option to abandon or exit the investment. In other words, an investor can back out of an investment at any point in time without 
bearing its return should he become pessimistic about its prospects.

The objective of this paper is to study the optimal time of investment and disinvestment in an environment with complementary 
investments and observational learning. Despite the large literature on strategic timing under payoff externality and informational 
externality individually, papers that focus on the interplay between these two externalities are scarce.1 Moreover, while abandonment 
is a common practice in investment, its impact on players’ investment incentives, particularly within the context of timing models, 
has remained relatively under-explored. This paper seeks to bridge this gap in the literature by presenting a tractable framework that 
captures all three elements: payoff externalities, informational externalities, and reversible investment decisions. In particular, I study 
how payoff and informational externalities interact, and the implications of reversibility on the dynamics of investment behaviors.
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Specifically, I study a two-player timing game of investment in continuous time with reversible investment decisions. Each player 
is endowed with one opportunity to invest in a risky project. The decision to invest is reversible, but a player cannot reinvest after 
having disinvested. The (lump-sum) return of the investment is ex ante unknown. Each player receives a private signal about the 
return only at the outset, and decides when to invest and when to disinvest after having invested. Actions are public; thus each 
player learns about the return not only from the private signal, but also by observing the investment decisions of the other player. 
The players pay a (lump-sum) investment cost at the time of their investment, which is not recoverable should they decide to ever 
disinvest. The investment has a flow standalone value that is normalized to zero, and a non-zero but uncertain complementary value 
that is captured by the return of the investment — the project generates a zero flow profit to the sole investor, and a lump-sum return 
at the time when both players invest.

My main findings are as follows. First, I characterize the symmetric equilibria in which players use threshold strategies and there 
is a positive probability of investment at more than one instant in time. I show uniqueness within this class of equilibria. In this 
unique equilibrium, players first decide whether to invest at the start of the game. This initial investment decision endogenously 
determines the players’ roles as the leader (if a player invests) or the follower (if a player doesn’t invest). The continuation game 
unfolds as a dual timing game, in which the leader chooses when to disinvest and the follower chooses when to invest. At the 
beginning of the continuation game, upon observing the leader has invested, a mass of follower types follow suit. Afterward, the 
duration a player is willing to wait signals his private information to the other player. Information is revealed in a single burst at the 
beginning of the game, and then aggregates continuously and gradually over time through delayed disinvestment and investment 
decisions.

Next, I investigate how changes in the informativeness of the signal distributions affect the learning dynamics and the equilibrium 
outcome. In particular, does having a more precise signal (defined formally in Section 4) increase the probability that the players 
coordinate initially (either both investing or both not investing), and do players coordinate faster if they cannot reach an initial 
agreement? I find that, while a more precise information structure always increases the speed of the observational learning process 
conditional on initial disagreement, its effect on the probability of initial agreement is ambiguous. Specifically, when information 
gets arbitrarily precise, the probability of initial agreement converges to 1; but when precision is low, there exist parameters where 
an increase in precision leads to a decrease in the probability of initial agreement. While better information enables players to make 
more informed decisions, it can also increase the variance in the two players’ beliefs, which leads to more disagreement. The effect 
of the increase in precision on welfare, defined as the sum of the players’ ex ante equilibrium payoffs, is positive in the limit: when 
information gets arbitrarily precise, welfare approaches the first-best level.

The equilibrium offers insights into the observed investment and disinvestment patterns by uncovering the main forces at play. 
In equilibrium, the players’ initial investment decisions endogenously introduce asymmetry between them in the continuation game. 
The equilibrium dynamics in the continuation game features a continuous information flow in both positive and negative directions. 
On the one hand, the leader staying in is good news that the investment is profitable and encourages investment. On the other hand, 
the follower staying out is bad news and encourages disinvestment. The follower delays investing, expecting that the pessimistic 
leader will disinvest, therefore making the leader’s choice to stay invested a positive signal for investment.

The equilibrium also uncovers an interesting rationale for why investors disinvest. The leader’s incentive to disinvest solely comes 
from his fear of coordinating on an unprofitable investment. While one can incorporate other factors that affect this incentive into 
the model,2 focusing on a zero standalone value of investment isolates the impact of payoff externality on the players’ incentive to 
disinvest.

Related literature

My model combines a dynamic coordination game (Gale, 1995) and an observational learning game with endogenous timing 
(Chamley and Gale, 1994, or Murto and Välimäki, 2013) and reversible actions.

As noted, my model features strategic delay. Although strategic delay is a common feature in coordination games or observational 
learning games with endogenous timing, the novelty is the way in which delay acts as a signal and facilitates information transmis-

sion. In my model, players are ex ante symmetric; their initial investment decisions creates asymmetry between them, leading to 
continuous information flow in both positive and negative directions over time: the leader’s delay signals the state is good and the 
follower’s delay signals the state is bad. This differs from most papers in the literature, where players are symmetric throughout the 
game and information flows continuously only in one direction.

In the dynamic coordination literature, delay arises due to strategic uncertainty. Players want to coordinate on the same action 
but are unsure of what others will do. In a seminal paper, Gale (1995) studies delay in an 𝑁 -player dynamic coordination game 
where each player decides whether to make an irreversible investment, the return of which is increasing in the number of investors.

In the observational learning with endogenous timing literature, delay arises due to informational externalities. Players “wait and 
see” what others do in order to learn from their actions. Chamley and Gale (1994) study an 𝑁 -player investment timing game with 
pure informational externalities. Each player observes a private signal and the actions of the others, and his payoff only depends on 
his own action and the state. Murto and Välimäki (2013) generalize Chamley and Gale (1994) by modeling uncertainty over when 
to invest, not just whether to invest. The equilibria in Murto and Välimäki (2013) feature alternating phases between investment 

2 For example, one can consider private or public learning about the state whilst investing, or payoff relevant factors such as flow cost, flow benefit, or recoverable 
cost. Wagner and Klein (2022) studies a framework without payoff externalities where players learn from a private signal and a public experimentation; I discuss the 
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addition of flow cost in Section 5.4 and argue that an equilibrium with recoverable cost is qualitatively similar to one with flow cost.
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waves (sudden bursts of information) and waiting phases (gradual revelation of information). In my model, a burst of information 
occurs only at time 0, and afterward, the information revelation can only be gradual. Wagner and Klein (2022) analyze a strategic 
experimentation problem where players can invest and disinvest. The players learn from an initial private signal, observing each 
other’s actions, and (as in Décamps and Mariotti, 2004) the experimentation of the first investor. The follower has incentives to delay 
because he benefits (informationally) from the leader’s experimentation. In their model, the players’ payoffs only depend on their 
own actions (thus no payoff externalities).

Turning to observational learning models with payoff externalities, there is a small theoretical literature that incorporates payoff 
externalities into a standard sequential social learning model as studied by Banerjee (1992) and Bikhchandani et al. (1992). Early 
work includes Dasgupta (2000), who studies a sequential social learning model where the return of the investment is realized if and 
only if all players invest. Although Dasgupta’s model has both coordination and informational externalities, the exogenous order of 
actions in the standard sequential social learning framework leaves open the possibilities for enriched learning behavior if players are 
allowed to choose the timing of their actions. An experimental study by Brindisi et al. (2014) investigates the effect of endogenous 
timing in a dynamic coordination setting with observable actions. In their model, investment is irreversible, thus the decision to 
invest eliminates strategic uncertainty once and for all, and all actions occur at time 0. With reversible investment and different 
modeling choices, my model allows for richer learning dynamics in a more general setting.

An important assumption of my model is the reversibility of investment decisions, in contrast to the irreversible investments as-

sumed in much of the literature. The usual formulation of irreversible investment, as in Dixit and Pindyck (1994), is that investment 
expenditures are sunk costs. The investment in my model is also “irreversible” in this sense as the cost of investment is nonrecover-

able. On the other hand, it is reversible in the sense that a player can shut down or abandon an investment without bearing its return. 
Abandonment of this kind is a common practice in investment (e.g., McDonald and Siegel, 1985, Bar-Ilan and Strange, 1996), yet 
seems understudied in the theoretical literature. In fact, in this paper, this reversibility is one of the key ingredients that give delay 
its informational value. It makes it possible that after players endogenously determine their roles in the game (leader or follower), 
they can subsequently signal their optimism or pessimism through delayed actions.3

Few other papers assume reversible actions in dynamic settings. Kováč and Steiner (2013) study the role of reversibility of 
investment in a two-period coordination game. Because they assume actions are unobservable, actions cannot signal private infor-

mation, the issue I focus on. As mentioned above, in Wagner and Klein (2022), players can invest and disinvest, but in equilibrium, 
disinvestment does not carry informational value because it occurs only when players have learned that investment is unprofitable.

2. Model

Time is continuous and the horizon is infinite, 𝑡 ≥ 0. There are two players 𝑖 = 1, 2. Each player chooses when (if ever) to invest 
in a risky project, and when (if ever) to disinvest. The return of the investment depends on an unknown state of the world 𝜃 ∈ {0, 1}, 
where 𝜃 = 1 indicates the project is good, while 𝜃 = 0 indicates the project is bad. The common prior belief that 𝜃 = 1 is 𝜌0 ∈ (0, 1).

Information At the outset, player 𝑖 receives a private signal 𝑠𝑖 ∈ 𝑆 = (0, 1) about the state 𝜃, which is conditionally independent 
across players. Conditional on state 𝜃, the distribution of 𝑠 is denoted by 𝐹𝜃(𝑠) with a continuously differentiable density function 
𝑓𝜃(𝑠) = d𝐹𝜃(𝑠)∕d𝑠 that is strictly positive on (0, 1). The two distributions 𝐹 0 and 𝐹 1 are mutually absolutely continuous with common 
support [0, 1], which ensures there does not exist a signal that perfectly reveals the state.

The distributions are assumed to satisfy the strict monotone likelihood ratio property (MLRP) on (0, 1) and have an un-

bounded likelihood. That is, the likelihood ratio 𝑓 0(𝑠)∕𝑓 1(𝑠) is strictly decreasing on (0, 1) with lim𝑠→0 𝑓
0(𝑠)∕𝑓 1(𝑠) = ∞ and 

lim𝑠→1 𝑓
0(𝑠)∕𝑓 1(𝑠) = 0. MLRP guarantees that a higher signal induces a higher posterior belief about the good state for any prior; 

unbounded likelihood guarantees that the distribution of the induced posterior beliefs has full support over [0, 1].4 Without loss of 
generality, I assume Pr(𝜃 = 1|𝑠) = 𝑠 for all 𝑠 ∈ (0, 1). By definition, the likelihood ratio is proportional to the posterior belief about 
the bad state over the good state, 𝑓 0(𝑠)∕𝑓 1(𝑠) = ((1 − 𝑠)∕𝑠)(𝜌0∕(1 − 𝜌0)), and strict MLRP is always satisfied.

Players do not observe each other’s private signal, but observe each other’s actions (investing, disinvesting, and not investing).

Actions and payoffs Each player chooses when, if ever, to invest, and when, if ever, to disinvest after having invested. A player 
cannot reinvest after having disinvested. If player 𝑖 invests at 𝑡𝑖, he pays a lump-sum (sunk) cost 𝑐 > 0 at 𝑡𝑖. As soon as both players 
invest, the project generates a lump-sum return 𝑅𝜃 to each of the players. If the state is good, the return is 𝑅1 =𝐻 > 𝑐, and if the 
state is bad, the return is negative: 𝑅0 = −𝐿 < 0.5 If only one player invests, the payoff from the investment is 0. The payoff from 
never investing is 0. In the event that one player invests at the same time the other disinvests, I define payoffs by assuming that 
the return 𝑅𝜃 is not realized. Implicitly, this approach assumes the friction for entry is infinitesimally larger than that for exit. If 
this assumption were reversed, it can potentially allow other equilibria. Finally, players discount payoffs at a common discount rate 
𝑟 > 0.

3 I discuss the case of irreversible investments in Section 5.2.
4 This is the same definition of “unbounded beliefs” as discussed in Smith and Sørensen (2000). Unlike in Smith and Sørensen (2000), the boundedness of beliefs is 

not crucial. The equilibrium and the dynamics of a model where the distribution of the posterior beliefs does not have full support over [0, 1] are qualitatively similar 
to the unbounded belief case analyzed in this paper.
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5 The assumption 𝑅0 < 0 is essential to the analysis. It ensures that a player will ever have an incentive to disinvest after having invested.
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As an example, suppose player 1 invests at 𝑡1 and player 2 invests at 𝑡2 ≥ 𝑡1. The realized payoff of player 1 and player 2 are 
𝑢1 = 𝑒−𝑟𝑡2𝑅𝜃 − 𝑒−𝑟𝑡1𝑐 and 𝑢2 = 𝑒−𝑟𝑡2𝑅𝜃 − 𝑒−𝑟𝑡2𝑐. Suppose player 1 disinvests at 𝜏1 ∈ (𝑡1, 𝑡2]. Then 𝑢1 = −𝑒−𝑟𝑡1𝑐 and 𝑢2 = −𝑒−𝑟𝑡2𝑐.6

Discussion of assumptions The assumption that investment is reversible plays a key role in generating the dynamics of this game. In 
Section 5.2, I provide a detailed discussion of this assumption and examine situations where investment decisions are irreversible 
and where they can be reversed more than once.

In this model, all payoffs are lump-sum. One can interpret this model as one in which the project is not implemented until both 
players invest, or equivalently, the project is in operation as soon as one player invests, and that player breaks even while being the 
sole investor. In Section 5.4, I generalize this payoff structure to one where the player who invests also pays a flow operating cost. 
While I do not provide the details, one can show that the model with a flow cost is qualitatively similar to one where the player 
partially recovers the investment cost when he disinvests. Both ingredients incentivize disinvestment; the recovered cost is a benefit 
to disinvesting, while the flow cost is a cost to not disinvesting.

As is common in coordination games, I assume players cannot communicate. I discuss the implications of communication in this 
model in Section 5.3.

Strategies The usual challenge of defining strategies in continuous-time models with observable actions arises. A player updates 
his belief in response to the other player’s actions, and may want to react to his updated belief without delay. To overcome this 
challenge, I follow the definition of strategy and history in Murto and Välimäki (2013) and model the dynamic game as a multi-stage 
stopping game as follows.

The game consists of at most two stages. Stage 0 starts at time 0. In this initial stage, the public history is that nobody has 
invested. Denote this history by ℎ0 ∈ 0 ∶= {∅}. Given this history and the private signal 𝑠𝑖, player 𝑖 ∈ {1, 2} chooses a time to 
invest 𝜎𝑖(𝑠𝑖, ∅) ≥ 0. The initial stage ends at 𝑡0 ∶= inf 𝑖 𝜎𝑖(𝑠𝑖, ∅).

As soon as stage 0 ends, the game immediately moves to stage 1. The public history after the initial stage and at the beginning 
of the next stage consists of 𝑡0 and the identity of the player(s) who invested at 𝑡0, that is, {({1, 2}, 𝑡0), ({1}, 𝑡0), ({2}, 𝑡0)}. The history 
({1, 2}, 𝑡0) is terminal: if both players invest simultaneously, the return of the project is realized at 𝑡0. The histories ({1}, 𝑡0) and 
({2}, 𝑡0) are non-terminal. If only one player invests, the player who invested is called the leader and the player who did not invest 
is called the follower; the subsequent continuation game is called a leader-follower continuation game. Define the set of non-terminal 
histories as 1 ∶= {({1}, 𝑡0), ({2}, 𝑡0)}. Given ℎ1 ∈1 and the private signal 𝑠𝑖, the leader decides if and when to disinvest and the 
follower decides if and when to invest, each conditional on the other player not moving first, 𝜎𝑖(𝑠𝑖, ℎ1) ≥ 𝑡0. The leader-follower 
continuation game ends either after the follower invests in which case payoff realizes, or after the leader disinvests, in which case it 
is a dominant strategy for the follower to never invest afterward. I treat these histories as if they were terminal.

Denote the set of all non-terminal public histories by  ∶=0 ∪1 = {∅} ∪ {({1}, 𝑡0), ({2}, 𝑡0)}. A pure strategy for player 𝑖 for 
stage 𝑘 ∈ {0, 1} is a function

𝜎𝑘𝑖 ∶ 𝑆 ×𝑘 → [𝑡𝑘−1,∞]

that maps the private signal and a non-terminal history to a time to switch actions (either switch from not investing to investing or 
from investing to not investing), conditional on the other player −𝑖 not switching before that time. Define player 𝑖’s strategy on the 
set of all non-terminal histories 𝜎𝑖 ∶ 𝑆 × → [0, ∞] as

𝜎𝑖(𝑠𝑖, ℎ) = 𝜎𝑘𝑖 (𝑠𝑖, ℎ) whenever ℎ ∈𝑘.

In words, as soon as a player invests, the initial stage ends and the next stage starts. The idea that players can react “immediately” 
to other players’ investments is captured by allowing investment at time zero of the next stage.

Equilibrium concept I analyze symmetric perfect Bayesian equilibria in which players use monotonic strategies, defined as follows.

Definition 1. A strategy 𝜎𝑖 is monotonic if 𝜎𝑖(𝑠𝑖, ∅) is (weakly) decreasing in 𝑠𝑖.

In words, on the history that nobody has invested, a player chooses to invest earlier if his signal is higher. An equilibrium is 
monotonic if players use monotonic strategies.

In the case that a player is indifferent between two investment (or disinvestment) times 𝑡′ and 𝑡′′ with 𝑡′ < 𝑡′′, I restrict attention 
to strategies that satisfy the following (indifference) tie-breaking rule. The strategies prescribe investment at 𝑡′′ to a player who has 
not invested, and disinvestment at 𝑡′ to a player who has invested. In other words, the players break indifference in favor of not 
investing.7

A perfect Bayesian equilibrium consists of a pair of strategies and a system of beliefs for each player. Each player’s strategy 
maximizes his expected payoff, and beliefs are updated via Bayes’ rule at any history reached with positive probability.

6 Player 2 still pays the investment cost 𝑐 if he were to invest after player 1 has disinvested — although in equilibrium it is suboptimal to do so and thus does not 
happen.

7 The equilibrium characterized below can still be obtained if this indifference is consistently broken in the opposite fashion instead (some of the proofs will take a 
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Off the equilibrium path, I assume each player’s belief about the deviator’s type is the type with belief zero, so neither player 
invests after any observable deviations. That is, upon observing a deviation by player −𝑖, player 𝑖 never invests if he has not invested, 
and disinvests immediately if he has invested. This assumption is without loss of generality in the sense that if a (perfect Bayesian) 
equilibrium outcome can be sustained with a different off-path belief, it can be sustained with this off-path belief.

3. Equilibrium analysis

3.1. Multiplicity of equilibria

As is common in coordination games, this game admits multiple equilibria. The first type of multiplicity comes from a continuum 
of “starting times.” An equilibrium is said to start at 𝑡≥ 0 if there is a positive probability of investment by either player at 𝑡 and zero 
probability for all 𝑡 < 𝑡. For any equilibrium that starts at time 0, one can construct another equilibrium by postponing all actions 
to a later time. Such equilibria are considered equivalent up to starting time and are inefficient due to discounting. Consequently, I 
focus on equilibria that start at time 0.

Within the set of equilibria that start at time 0, there are three types of equilibria. One equilibrium that always exists is one in 
which neither player invests for all 𝑡 ≥ 0. I call this a no-investment equilibrium. Another equilibrium prescribes investment only at 
time 0: there is a positive probability of investment at 𝑡 = 0, and zero probability for all 𝑡 > 0. I call this a static equilibrium. In the 
static equilibrium, player 𝑖 invests at time 0 if and only if his type 𝑠𝑖 is above threshold 𝑠∗, where

Pr(𝑠−𝑖 > 𝑠∗, 𝜃 = 1|𝑠𝑖 = 𝑠∗)𝐻 − Pr(𝑠−𝑖 > 𝑠∗, 𝜃 = 0|𝑠𝑖 = 𝑠∗)𝐿− 𝑐 = 0. (1)

Unless both players invest at time 0, in which case the payoff realizes, the player who invested at time 0 disinvests immediately, and 
the player who did not invest at time 0 never invests. The static equilibrium is characterized by threshold 𝑠∗.8

Now that I have characterized the equilibria that have actions only at time 0, I turn to the more complex and economically 
interesting case where there is a positive probability of investment at more than one point in time. I call this a dynamic equilibrium. 
In what follows, I characterize monotonic symmetric dynamic equilibria subject to the (indifference) tie-breaking rule.

3.2. Monotonic symmetric dynamic equilibrium

The structure of a monotonic symmetric dynamic equilibrium is as follows. The initial stage starts at 𝑡 = 0. In the initial stage, 
a player invests if his type is above threshold 𝑧 and does not invest if below. After players take an action in the initial stage, there 
are three possible continuation games. First, if both players invest, payoff realizes. Second, if neither player invests, neither ever 
invests afterward.9 Third, if only one player invests, the game immediately moves to the leader-follower continuation game. In this 
continuation game, players play according to a sequence of time-dependent thresholds: at each 𝑡 ≥ 0, the leader stays invested if his 
type is above threshold 𝑥(𝑡) and the follower does not invest if his type is below threshold 𝑦(𝑡).

The rest of the section is organized as follows. First, I discuss the players’ incentives at time 0 and characterize the initial invest-

ment thresholds (𝑧, 𝑥(0), 𝑦(0)) in Proposition 1. Next, I characterize the continuation thresholds 𝑥(𝑡) and 𝑦(𝑡) for all 𝑡 in Proposition 2

and discuss their properties. Lastly, in Theorem 1, I present sufficient conditions for existence and uniqueness of such an equilibrium.

3.2.1. Incentives at time 0
Consider the leader-follower continuation game. At time 0, upon observing an investment in the initial stage, in the second stage, 

the leader stays invested if his type is above 𝑥(0) and the follower invests if his type is above 𝑦(0). More specifically, 𝑥(0) and 𝑦(0)
are the investment thresholds of the leader’s and the follower’s types on the equilibrium path. That is, given that players follow the 
equilibrium strategies in the initial stage and invest if and only if their type is above 𝑧, at the beginning of the leader-follower 
continuation game, 𝑥(0) ≥ 𝑧 is the lowest type of leader who would stay invested, and 𝑦(0) ≤ 𝑧 is the lowest type of follower who 
would follow suit.

The following result characterizes the investment thresholds (𝑧, 𝑥(0), 𝑦(0)) in these two stages.

Proposition 1. In any monotonic symmetric dynamic equilibrium, the initial values (𝑧, 𝑥(0), 𝑦(0)) ∈ (0, 1)3 must satisfy

𝑦(0) < 𝑧 = 𝑥(0), (2)

8 The no-investment equilibrium and the static equilibrium constitute the set of (pure strategy) equilibria of a one-shot game at 𝑡 = 0 with the following payoff 
matrix:

Invest Not invest

Invest 𝑅𝜃 − 𝑐,𝑅𝜃 − 𝑐 −𝑐,0
Not invest 0,−𝑐 0,0

By MLRP, the equilibrium of this one-shot game must be monotonic. The threshold type 𝑠∗ is indifferent between investing and not investing, all types above it invest, 
and all types below do not.

9 This is shown in Lemma 8 in the Appendix. In short, Lemma 8 states that in any monotonic symmetric dynamic equilibrium, neither player invests after no initial 
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𝜌0𝑓
1(𝑧)𝐹 1(𝑧)

𝜌0𝑓
1(𝑧)𝐹 1(𝑧) + (1 − 𝜌0)𝑓 0(𝑧)𝐹 0(𝑧)

𝐹 1(𝑧) − 𝐹 1(𝑦(0))
𝐹 1(𝑧)

𝐻

−
(1 − 𝜌0)𝑓 0(𝑧)𝐹 0(𝑧)

𝜌0𝑓
1(𝑧)𝐹 1(𝑧) + (1 − 𝜌0)𝑓 0(𝑧)𝐹 0(𝑧)

𝐹 0(𝑧) − 𝐹 0(𝑦(0))
𝐹 0(𝑧)

𝐿 = 𝑐, (3)

𝜌0𝑓
1(𝑥(0))𝑓 1(𝑦(0))𝐻 − (1 − 𝜌0)𝑓 0(𝑥(0))𝑓 0(𝑦(0))𝐿 = 0. (4)

Condition (2) describes the equilibrium behavior at the beginning of the leader-follower continuation game. The leader stays 
invested for sure (𝑥(0) = 𝑧), and there is a strictly positive probability that the follower follows suit (𝑦(0) < 𝑧).

Intuitively, a player pays the investment cost upfront if he becomes the leader. A player is willing to do so only if he expects this 
action to induce a high enough probability of investment by the other player. This suggests there has to be a mass of follower types 
following suit, namely, 𝑦(0) < 𝑧. In turn, these higher follower types, upon seeing the good news that the leader has invested, now 
find investment profitable and invest without further delay. The leader, anticipating a mass of follower types following suit, will 
want to stay invested and wait for the (possibility of) investment by the follower, rather than to disinvest right away. This suggests 
𝑥(0) = 𝑧.

Equation (3) follows from type 𝑧’s indifference between investing and not investing in the initial stage at time 0 given his 
continuation strategies.10 Equation (4) follows from type 𝑥(0)’s optimality condition in the leader-follower continuation game, which 
is analyzed in the following section.

3.2.2. Leader-follower continuation game

In this continuation game, each player solves an optimal stopping problem. If the leader stops, he disinvests, while if the follower 
stops, he invests. I derive conditions that any monotonic symmetric dynamic equilibrium must satisfy.

With a slight abuse of notation, denote player 𝑖’s on-path pure strategy in this continuation game by 𝜎𝑖 ∶ 𝑆𝑖 → [0, ∞], which maps 
player 𝑖’s type to a stopping time conditional on the other player not having stopped. Let 𝑖 ∈ {𝐿, 𝐹 }, where 𝐿 denotes the leader 
and 𝐹 the follower. Similarly as before, 𝜎𝐿 and 𝜎𝐹 are defined as the leader’s and follower’s strategy on the equilibrium path, which 
means 𝑆𝐿 = [𝑥(0), 1) and 𝑆𝐹 = (0, 𝑦(0)]. Let 𝐺𝐿(𝑡) ∶= Pr(𝜎𝐿(𝑥) ≤ 𝑡|𝑥 ≥ 𝑥(0)) denote the probability that, conditional on the player 
being the leader, he stops no later than 𝑡 according to 𝜎𝐿, and 𝐺𝜃

𝐿
(𝑡) denote this probability conditional on state 𝜃. Define 𝐺𝐹 (𝑡)

and 𝐺𝜃
𝐹
(𝑡) for the follower analogously. Define 𝑇𝐿 as the earliest time by which all types of leader decide to disinvest, and 𝑇𝐹 as the 

earliest time by which all types of follower decide to not invest ever after. That is, 𝑇𝑖 ∶= inf{𝑡 > 0 ∶𝐺𝑖(𝑡) = lim𝜏→∞𝐺𝑖(𝜏)}.

Because of coordination, if at some point in time, a player chooses to not invest ever after, the other player will do the same. 
Lemma 1 formalizes this intuition.

Lemma 1. In any monotonic symmetric dynamic equilibrium, 𝑇 ∶= 𝑇𝐿 = 𝑇𝐹 ≤∞.

In other words, if the players cannot reach an agreement (either both investing or both not investing) by 𝑇 , the probability of 
investment by either player after 𝑇 is zero. In what follows, I determine players’ equilibrium behavior for 𝑡 ∈ [0, 𝑇 ].

The following properties of the strategies shed light on how information aggregates in equilibrium. Lemma 2 establishes there 
does not exist a time at which a mass of types stop. This means information is revealed gradually, never in bursts.

Lemma 2. In any monotonic symmetric dynamic equilibrium, 𝜎𝐿 is strictly increasing and 𝜎𝐹 is strictly decreasing.

Lemma 2 in its weak form follows from a revealed-preference argument. By MLRP, it is not surprising that a higher type of 
leader (lower type of follower) prefers to wait longer because he is more optimistic (pessimistic). However, strict monotonicity in the 
context of coordination is not as straightforward. Specifically, 𝜎𝑖 constant at 𝑡 over an interval means all types in this interval stop at 
𝑡. Intuitively, if a player is getting a continuous flow of information about the other player, he will want to respond continuously. If 
there is a mass of types wanting to stop at a particular time, this must be a response to a mass of types stopping by the other player. 
This cannot happen in equilibrium: by assumption, the return of the investment is not realized when the follower invests at the same 
time the leader disinvests, it is a strictly dominated strategy for the follower to invest at the same time the leader disinvests.

Lemma 3 establishes there does not exist a time interval over which neither player stops for sure. This means information is 
revealed continuously, never with pauses.

Lemma 3. In any monotonic symmetric dynamic equilibrium, 𝜎𝐿 and 𝜎𝐹 are continuous.

10 To be precise, type 𝑧 is indifferent in the sense that his expected payoff from not investing at time 0 is equal to the supremum of his expected payoff over all 
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A pause is detrimental to payoff due to discounting and has no informational value. Because a player’s belief is the same at the 
beginning and the end of the pause, where he willing to stop at the end of the pause, he would deviate to doing so at the beginning 
of it.11

By Lemma 2 and Lemma 3, the inverse mappings of 𝜎𝐿 and 𝜎𝐹 , defined as 𝑥(𝑡) ∶= 𝜎−1
𝐿
(𝑡) and 𝑦(𝑡) ∶= 𝜎−1

𝐹
(𝑡), are continuous, and 

strictly increasing and decreasing in 𝑡 respectively. I refer 𝑥(𝑡) and 𝑦(𝑡) as the equilibrium (inverse) strategies of the leader and the 
follower. In words, leader of type 𝑥(𝑡∗) and follower of type 𝑦(𝑡∗) optimally stop at 𝑡∗. If the leader has not stopped by 𝑡∗, the follower 
knows the leader’s type must be higher than 𝑥(𝑡∗). If the follower has not stopped by 𝑡∗, the leader knows the follower’s type must 
be lower than 𝑦(𝑡∗). Given the follower’s conditional distributions of stopping time 𝐺𝜃

𝐹
(𝑡), leader of type 𝑥’s expected payoff from 

stopping at 𝑡 is

(𝑥, 𝑡) =Pr(𝜃 = 1|𝑠𝐿 = 𝑥, 𝑠𝐹 ≤ 𝑦(0))

𝑡

∫
0

𝑒−𝑟𝜏d𝐺1
𝐹
(𝜏)𝐻

− Pr(𝜃 = 0|𝑠𝐿 = 𝑥, 𝑠𝐹 ≤ 𝑦(0))

𝑡

∫
0

𝑒−𝑟𝜏d𝐺0
𝐹
(𝜏)𝐿,

and given 𝐺𝜃
𝐿
(𝑡), follower of type 𝑦’s expected payoff from stopping at 𝑡 is

 (𝑦, 𝑡) =𝑒−𝑟𝑡
(
Pr(𝜃 = 1|𝑠𝐹 = 𝑦, 𝑠𝐿 ≥ 𝑥(0))(1 −𝐺1

𝐿
(𝑡))(𝐻 − 𝑐)

− Pr(𝜃 = 0|𝑠𝐹 = 𝑦, 𝑠𝐿 ≥ 𝑥(0))(1 −𝐺0
𝐿
(𝑡))(𝐿+ 𝑐)

)
.

In equilibrium, a pair of (inverse) strategies (𝑥(𝑡), 𝑦(𝑡)) must satisfy (𝑥(𝑡), 𝑡) ≥ (𝑥(𝑡), 𝑡′) and  (𝑦(𝑡), 𝑡) ≥  (𝑦(𝑡), 𝑡′) for all 𝑡 and all 
𝑡′ ≠ 𝑡. The following proposition characterizes the equilibrium (inverse) strategies 𝑥(𝑡) and 𝑦(𝑡).

Proposition 2. In any monotonic symmetric dynamic equilibrium, 𝑥(𝑡) and 𝑦(𝑡) are differentiable functions that satisfy

𝜌0𝑓
1(𝑥(𝑡))𝑓 1(𝑦(𝑡))𝐻 − (1 − 𝜌0)𝑓 0(𝑥(𝑡))𝑓 0(𝑦(𝑡))𝐿 = 0, (5)

𝑥′(𝑡) =𝑟
(
(𝐻 − 𝑐)𝐿
(𝐿+𝐻)𝑐

1 − 𝐹 1(𝑥(𝑡))
𝑓 1(𝑥(𝑡))

− (𝐿+ 𝑐)𝐻
(𝐿+𝐻)𝑐

1 − 𝐹 0(𝑥(𝑡))
𝑓 0(𝑥(𝑡))

)
. (6)

Equation (5) follows from leader 𝑥(𝑡)’s first-order condition. If the follower does not invest in [𝑡, 𝑡 + d𝑡), the leader’s marginal cost 
from waiting is 0. If the follower invests in [𝑡, 𝑡 + d𝑡), the return realizes, which would not have happened had the leader not waited. 
So the leader’s marginal benefit from waiting is

− 𝑦′(𝑡) Pr(𝑠𝐹 = 𝑦(𝑡)|𝑠𝐿 = 𝑥(𝑡), 𝑠𝐹 ≤ 𝑦(𝑡))

⋅
[
Pr(𝜃 = 1|𝑠𝐿 = 𝑥(𝑡), 𝑠𝐹 = 𝑦(𝑡))𝐻 − Pr(𝜃 = 0|𝑠𝐿 = 𝑥(𝑡), 𝑠𝐹 = 𝑦(𝑡))𝐿

]
.

This marginal benefit must be equal to the marginal cost which is 0. The first line is the probability that the follower invests in 
[𝑡, 𝑡 + d𝑡), which is strictly positive. Therefore, the second line must be 0. This means if the follower invests in [𝑡, 𝑡 + d𝑡), the leader 
learns that the follower’s type is equal to 𝑦(𝑡), and the expected return of the project given the two signals 𝑥(𝑡) and 𝑦(𝑡) must be 0. In 
other words, the leader stays invested as long as his private signal (belief), conditional on the follower investing immediately, maps 
to a weakly positive expected payoff.

Equation (6) is derived from follower 𝑦(𝑡)’s first-order condition. If the leader stays invested in [𝑡, 𝑡 +d𝑡), the follower incurs a loss 
by waiting due to discounting:

𝑟
[
Pr(𝜃 = 1|𝑠𝐹 = 𝑦(𝑡), 𝑠𝐿 ≥ 𝑥(𝑡))𝐻 − Pr(𝜃 = 0|𝑠𝐹 = 𝑦(𝑡), 𝑠𝐿 ≥ 𝑥(𝑡))𝐿− 𝑐

]
.

This term is strictly positive for otherwise the follower would not want to invest at 𝑡. If the leader disinvests in [𝑡, 𝑡 +d𝑡), the follower’s 
marginal benefit from waiting is

− 𝑥′(𝑡) Pr(𝑠𝐿 = 𝑥(𝑡)|𝑠𝐹 = 𝑦(𝑡), 𝑠𝐿 ≥ 𝑥(𝑡))

⋅
[
Pr(𝜃 = 1|𝑠𝐿 = 𝑥(𝑡), 𝑠𝐹 = 𝑦(𝑡))𝐻 − Pr(𝜃 = 0|𝑠𝐿 = 𝑥(𝑡), 𝑠𝐹 = 𝑦(𝑡))𝐿− 𝑐

]
.

The first term is the probability that the leader disinvests in [𝑡, 𝑡 + d𝑡), which is strictly positive. The second line is the follower’s 
expected payoff from investing, which is negative. If the leader disinvests in [𝑡, 𝑡 + d𝑡), the follower learns that the leader’s type is 
𝑥(𝑡). As noted, the leader’s first-order condition (5) implies that the expected return given 𝑥(𝑡) and 𝑦(𝑡) is 0. However, in addition to 

11 To be precise, the follower strictly prefers investing at the beginning of the pause due to discounting. The leader is indifferent between disinvesting at any time 
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during the pause. The leader will deviate to disinvesting at the beginning of the pause given the (indifference) tie-breaking rule.
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Fig. 1. Equilibrium (inverse) strategies for 𝜌0 = 1∕2,𝐻 =𝐿 = 1, 𝑟 = 1∕5, 𝑐 = 1∕5 and posterior beliefs distributed according to 𝐵𝑒𝑡𝑎(1 + 𝜃,1 + (1 − 𝜃)).

getting this zero return, the follower also pays the investment cost 𝑐 > 0. Therefore, by waiting, the follower saves himself from an 
unprofitable investment.

It follows from the autonomous differential equation (6) and Lemma 2 that 𝑇 =∞. This means a leader with a posterior belief 
arbitrarily close to 1 never disinvests and a follower with a posterior belief arbitrarily close to 0 never invests.12

Lemma 4. In any monotonic symmetric dynamic equilibrium, 𝑇 =∞.

3.2.3. Existence and uniqueness

Proposition 1 and Proposition 2 establish the necessary conditions for equilibrium. I now derive sufficient conditions for the 
existence and uniqueness of such an equilibrium.13 To this end, I impose the following two assumptions on the signal distributions. 
Define the hazard ratio ℎ(𝑠) and the failure ratio 𝑘(𝑠) as

ℎ(𝑠) ∶= 1 − 𝐹 0(𝑠)
1 − 𝐹 1(𝑠)

𝑓 1(𝑠)
𝑓 0(𝑠)

and 𝑘(𝑠) ∶= 𝐹 0(𝑠)
𝐹 1(𝑠)

𝑓 1(𝑠)
𝑓 0(𝑠)

.

Assumption. (𝐹 0, 𝐹 1) satisfies the following properties:

(i) Increasing hazard ratio property (IHRP): ℎ(𝑠) is strictly increasing in 𝑠.
(ii) Increasing failure ratio property (IFRP): 𝑘(𝑠) is strictly increasing in 𝑠.

In words, IHRP and IFRP state that higher signals are better news conditional on truncations.14 Many of the commonly used 
signal distributions satisfy IHRP and IFRP. Examples include Beta distributions and Normal distributions.15

IHRP is not necessary and is assumed only for convenience: it enables a clean statement of the parametric restriction for the 
existence of the equilibrium. IFRP ensures uniqueness of the initial values and further uniqueness of the equilibrium.

Theorem 1. There exists 𝑐 > 0 such that a monotonic symmetric dynamic equilibrium exists if and only if 𝑐 < 𝑐. Moreover, this equilibrium 
is unique (within its class).

3.2.4. Discussions

Learning dynamics Fig. 1 plots the equilibrium (inverse) strategies and illustrates the equilibrium dynamics. At 𝑡 = 0, information 
is aggregated in a single burst. A player with a type higher than 𝑧 invests right away. Upon observing this investment, a player 
with a type in [𝑦(0), 𝑧] follows suit. For 𝑡 > 0, information is aggregated gradually and continuously through delayed investment and 
disinvestment. At each 𝑡, the leader disinvests if his type is 𝑥(𝑡) and stays invested if above 𝑥(𝑡). The follower invests if his type is 
𝑦(𝑡) and does not if below.

To see why there cannot be a flow of information at 𝑡 = 0, suppose the contrary and that in the initial stage, a player’s investment 
time is strictly decreasing in his type. With this strategy, the only type who invests at 𝑡 = 0 is the highest possible type. Note that any 

12 As mentioned in footnote 4, this result (Lemma 4) does not depend on the unboundedness of signals. In particular, if the support of the belief is [𝑝, 𝑝] with 𝑝 > 0
and 𝑝 < 1, a leader with posterior belief arbitrarily close to 𝑝 never disinvests and a follower with a posterior belief arbitrarily close to 𝑝 never invests.

13 Note that by uniqueness, I mean uniqueness of the equilibrium path of play. Aside from the off-path belief specified in the model, there exist other off-path beliefs 
that sustain the equilibrium characterized above.
14 Kalashnikov and Rachev (1985) introduce these two concepts in statistics, and Herrera and Hörner (2012) derive their properties in a standard sequential social 

learning model (à la Banerjee, 1992 and Bikhchandani et al., 1992).
15 IHRP and IFRP are assumptions on the signal distributions. Because signals are taken to be posterior beliefs, IHRP and IFRP are also imposed on the posterior 

belief distributions. If the identification between signals and posterior beliefs is dropped, it can be readily verified that if the signal distributions satisfy IHRP, IFRP, 
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and MLRP, the induced posterior belief distributions also satisfy IHRP and IFRP (in addition to MLRP).
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type who would not invest after learning the other player has the highest possible type will never invest and hence is, in this sense, 
not relevant. Therefore, upon observing an investment at 𝑡 = 0, all relevant types will invest immediately. Investing at 𝑡 = 0 thus 
induces the highest probability of joint investment at the earliest time, which implies the next highest type will deviate to investing 
at 𝑡 = 0 as well.16

Evolution of beliefs I discuss the evolution of the players’ actual posterior beliefs and the public belief in the leader-follower con-

tinuation game. A player’s actual posterior belief is his posterior belief given his private signal and the public information that 
the other player has not stopped. The public belief, denoted by 𝜌(𝑡), is the posterior belief given only the observable actions, 
𝜌(𝑡) ∶= Pr(𝜃 = 1|𝑠𝐿 ≥ 𝑥(𝑡), 𝑠𝐹 < 𝑦(𝑡)).

A direct implication of the monotonicity of the equilibrium (inverse) strategies is that a player’s actual posterior belief is mono-

tone: the leader’s posterior belief decreases over time and the follower’s increases. The evolution of the public belief, however, is not 
as clear. The evolution of this belief is driven by two opposing forces: the leader staying in is good news but the follower staying out 
is bad. Although the leader staying in can imply he is arbitrarily optimistic, at the same time the follower staying out implies he is 
arbitrarily pessimistic. Which effect dominates depends on the relative rate at which the leader and the follower stop, as well as the 
relative likelihood of having a leader and a follower wait that long. Although the exact interplay of these two forces is difficult to 
pin down generally, one effect never overwhelms the other. The public belief is bounded away from 0 and 1, and eventually settles 
at an interior value 𝜌∗ (𝜌∗ is defined in the Appendix).

Proposition 3. 𝜌(𝑡) ∈ (0, 1) for all 𝑡 ≥ 0. As 𝑡 →∞, 𝜌(𝑡) → 𝜌∗ with 𝜌∗ ∈ (0, 1).

Accuracy of investment decisions Another interesting object is the players’ ability to (jointly) make the correct decisions. What is 
the probability that both players invest by time 𝑡 conditional on the project being good (denoted by 𝜋𝐼 (𝑡)), and neither invests 
conditional on the project being bad (denoted by 𝜋𝑁𝐼 (𝑡))? The following result states that both probabilities increase over time but 
remain interior even in the limit.

Proposition 4. (i) 𝜋𝐼 (𝑡) and 𝜋𝑁𝐼 (𝑡) are both strictly increasing in 𝑡; (ii) lim𝑡→∞ 𝜋𝐼 (𝑡) < 1 and lim𝑡→∞ 𝜋𝑁𝐼 (𝑡) < 1.

The probability of taking the (jointly) correct action increases over time because information aggregates over time in the leader-

follower continuation game. However, this probability is bounded above by the errors in the players’ initial actions. The players 
have a chance to “right a wrong” over time only if at least one player gets it right initially. Because information is not perfect, the 
probability of both players taking the wrong action initially is always positive.

3.2.5. Takeaways

I conclude the equilibrium analysis by highlighting three features of the equilibrium.

First, the players’ roles as the leader and follower are determined by their actions at time 0, when the players are ex ante 
symmetric. After time 0, the leader-follower continuation game is one with asymmetric players and this asymmetry is endogenous.

Second, the learning dynamic features bursts of information at the start of the game, and gradual revelation of information in 
the continuation game. In the continuation game, the duration of the leader’s and the follower’s waiting times respectively signal 
their optimism and pessimism. For each instant the leader stays invested, the follower becomes more optimistic; for each instant the 
follower stays out, the leader becomes more pessimistic. Moreover, the investment and disinvestment times fully reveal the types of 
the leader and the follower.

Lastly, the equilibrium dynamics are driven by a novel feature that the leader’s incentive to disinvest solely comes from his fear 
of implementing a bad project and thus realizing a negative return — there is no flow cost of investment, and when the leader 
disinvests, he does not recover the investment cost, nor get any return.

4. Role of information precision

In this section, I study how changes in the precision (or informativeness) of the players’ private signals affect the equilibrium 
dynamics and outcomes. For tractability, I focus on a symmetric environment. In a symmetric environment, the return 𝐻 from investing 
in state 𝜃 = 1 is equal to the loss 𝐿 from investing in 𝜃 = 0 and is normalized to 1, so 𝐻 = 𝐿 = 1. The prior belief about 𝜃 = 1 is 
𝜌0 = 1∕2. The conditional distributions 𝐹 0 and 𝐹 1 are symmetric about the prior 1∕2: 𝐹 1(𝜇) = 1 − 𝐹 0(1 − 𝜇). In other words, the 
probability of having a posterior belief 𝜇 in state 𝜃 = 1 is equal to the probability of having a posterior belief 1 − 𝜇 in 𝜃 = 0.

Definition of precision

Recall that without loss of generality, the players’ types are taken to be their posterior beliefs given their private signals. I define 
precision in terms of the posterior belief distributions. By definition, any pair of conditional posterior belief distributions must satisfy 
the consistency condition 𝜇 = Pr(𝜃 = 1|𝜇), that is,

16 Given the assumption that the belief is unbounded, the highest type has a belief arbitrarily close to 1 so all types are “relevant” in the sense described above. 
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However, as indicated in the text, the argument also works for bounded beliefs.
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𝜇 =
𝜌0𝑓

1(𝜇)
𝜌0𝑓

1(𝜇) + (1 − 𝜌0)𝑓 0(𝜇)
. (7)

A common way to rank distributions according to their precision is the mean-preserving spread of posteriors. I adopt a stronger 
notion, the unimodal likelihood ratio (ULR) order, which has more structure than mean-preserving spread: the posterior belief about 
the good state conditional on left (right) truncation is higher (lower) under a more precise distribution. The standard definition of 
the ULR order is as follows.17

Definition 2. A function 𝓁(𝜇) is unimodal around 𝜇̃ if 𝓁(𝜇) is strictly increasing for 𝜇 < 𝜇̃ and strictly decreasing for 𝜇 > 𝜇̃.

Definition 3 (Hopkins and Kornienko, 2007, Definition 2). For two distributions 𝐹 and 𝐹 with density 𝑓 and 𝑓 respectively and 
common support, 𝐹 dominates 𝐹 in the unimodal likelihood ratio (ULR) order, written as 𝐹 ≻ULR 𝐹 , if the likelihood ratio 𝑓 (𝜇)∕𝑓 (𝜇)
is unimodal and the mean of 𝐹 is (weakly) higher than the mean of 𝐹 .

I define more precise than by adapting the ULR order, which ranks two distributions, for two pairs of distributions. To set notation, 
define the pair of conditional posterior belief distributions as 𝐅 ∶= (𝐹 0, 𝐹 1), and the ex ante posterior belief distribution of 𝐅 as 
𝐹 (𝜇) ∶= 𝜌0𝐹

1(𝜇) + (1 − 𝜌0)𝐹 0(𝜇).

Definition 4. For two pairs of conditional posterior belief distributions 𝐅 and 𝐅̂, 𝐅̂ is more precise than 𝐅 if (i) the ex ante posterior 
belief distribution 𝐹 dominates 𝐹 in the unimodal likelihood ratio order, 𝐹 ≻ULR 𝐹 , and (ii) the mean of 𝐹 1 is higher than the mean 
of 𝐹 1.18

This definition is better interpreted in the symmetric environment. Condition (ii) is intuitive: conditional on the state, a more 
precise pair of distributions should be on average “more accurate” than a less precise pair. Condition (i) implies that the likelihood 
ratio of 𝐹 and 𝐹 is unimodal and symmetric about the prior 1∕2. Because the mean of 𝐹 and 𝐹 are both equal to the prior, condition 
(i) further implies 𝐹 is a mean-preserving spread of 𝐹 (see Hopkins and Kornienko, 2007, Proposition 1).

In line with the interpretation of the mean-preserving spread, 𝐅̂ is more precise than 𝐅 if the ex ante posterior belief distribution 
𝐹 is more dispersed than 𝐹 . It is less likely to get a posterior belief closer to the prior when information is more precise. This is 
captured by the likelihood ratio being unimodal around the prior.

Many commonly used (signal) distributions, such as Beta distributions with different variances and Normal distributions with 
different variances, induce posterior belief distributions that satisfy the ULR order.

4.1. Speed of learning

I show that in the leader-follower continuation game, the equilibrium (inverse) strategies 𝑥(𝑡) and 𝑦(𝑡) are ordered pointwise for 
different levels of precisions.

Proposition 5. Take two pairs of conditional posterior belief distributions 𝐅 and 𝐅̂ with which a monotonic symmetric dynamic equilibrium 
exists. Suppose 𝐅̂ is more precise than 𝐅. In the leader-follower continuation game, the type of leader (follower) who disinvests (invests) at 
any 𝑡 ≥ 0 is higher (lower) with 𝐅̂.

Fig. 2 illustrates this result by plotting the leader and the follower’s equilibrium (inverse) strategies 𝑥(𝑡) and 𝑦(𝑡) as a function of 
𝑡, for posterior beliefs that are induced by signals distributed according to the Beta distributions 𝐵𝑒𝑡𝑎(1 + 𝛾𝜃, 1 + 𝛾(1 − 𝜃)) for 𝛾 > 0. 
It can be verified that the higher 𝛾 is, the higher the precision of the induced posterior belief distributions.

The proposition can be restated as follows. For a player with any given private belief, if the precision is higher, he stops earlier. 
The leader and the follower reach an agreement (either both investing or both not investing) at the minimum of their stopping times. 
This means players reach an agreement faster.

Corollary 1. Fix a pair of types for the leader and the follower. The time at which the leader and the follower reach an agreement is lower 
with 𝐅̂.

In other words, higher precision leads to faster coordination. This result might seem intuitive, but it is not obvious. Suppose the 
leader’s strategy 𝑥(𝑡) does not change with precision. If the leader has stayed invested up to 𝑡, the follower knows the leader’s type 
must be above 𝑥(𝑡). The ULR order implies knowing the leader’s type is above 𝑥(𝑡) is more optimistic news if information is more 
precise. Thus, if the follower waits the same amount of time before investing under a more precise distribution, his belief would be 
higher by the end of his waiting time, and thus he would deviate to investing earlier. The leader in turn would want to disinvest 
earlier. This suggests players reach an agreement faster if information is more precise.

17 Ramos et al. (2000) first introduce the ULR order and Hopkins and Kornienko (2007) summarizes some of its properties.
150

18 Because the mean of any ex ante posterior belief distribution is equal to the prior, condition (ii) is equivalent to the mean of 𝐹 0 being lower than the mean of 𝐹 0 .
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Fig. 2. Equilibrium (inverse) strategies in a symmetric environment with 𝑟 = 1∕5, 𝑐 = 1∕5, and posterior beliefs induced by signals distributed according to 𝐵𝑒𝑡𝑎(1 +
𝛾𝜃, 1 + 𝛾(1 − 𝜃)).

Fig. 3. Probability of initial agreement in a symmetric environment with 𝑐 = 1∕5 (left panel) and 𝑐 = 3∕5 (right panel), and posterior beliefs induced by signals 
distributed according to 𝐵𝑒𝑡𝑎(1 + 𝛾𝜃, 1 + 𝛾(1 − 𝜃)).

4.2. Probability of initial coordination

I say that the players reach an initial agreement if either both players invest or neither player invests at 𝑡 = 0. This includes three 
events: both players invest initially, neither invests initially, or one invests initially and the other follows suit. The previous section 
establishes that if information is more precise, conditional on no initial agreement, the resolution of disagreement is faster in the 
continuation game. How does the probability of initial agreement change with precision?

I begin by setting the notation for precision. Consider a set of distributions {𝐅𝛾}𝛾≥0 ordered by precision and indexed by a 
parameter 𝛾 ≥ 0, where a higher 𝛾 indicates a higher precision. I refer this index 𝛾 as the precision of 𝐅. Assume this indexed set of 
distributions satisfies the following property: as 𝛾 → 0, 𝐅𝛾 converges (pointwise) to the (pair of) uninformative distributions, and as 
𝛾 →∞, 𝐅𝛾 converges (pointwise) to the (pair of) perfectly informative distributions.19 Denote the probability of initial agreement in 
the dynamic equilibrium by Π𝛾 (𝑥𝛾 (0)), where 𝑥𝛾 (0) is the initial value under 𝐅𝛾 .

As before, consider the Beta distributions {𝐵𝑒𝑡𝑎(1 + 𝛾𝜃, 1 + 𝛾(1 − 𝜃))}𝛾>0 for an illustration. Fig. 3 plots the probability of initial 
agreement as a function of precision 𝛾 for two different levels of investment costs. It illustrates that there exists 𝛾 such that the 
dynamic equilibrium does not exist for 𝛾 ≤ 𝛾 . For 𝛾 > 𝛾 , as 𝛾 increases, depending on the value of 𝑐, the probability of initial 
agreement either first decreases and then increases to 1, or monotonically increases to 1.

This example shows there exist parameters such that the probability of initial agreement is U-shaped in precision. Intuitively, the 
probability of coordination at the beginning of the game is governed by the difference in players’ posterior beliefs upon observing 
the private signal. If the signals are uninformative, the players’ posterior beliefs are the same as their prior. If the signals are perfectly 
informative, players update their belief to either 0 or 1. In both cases, the players’ beliefs are the same as one another, so they would 
take the same action.20 For signals that are partially informative, as precision increases, while they make players more informed, 
they also create variances in beliefs and might lead to a higher probability of disagreement.

The following proposition formalizes this intuition in the limit. The dynamic equilibrium exists only when precision is sufficiently 
high, and the probability of initial agreement in the dynamic equilibrium converges to 1 as precision gets arbitrarily high.

19 The indexing is arbitrary. The results hold for any set of distributions that satisfies this property.
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20 In the symmetric environment, if the signals are uninformative, the expected payoff from investing given the prior is −𝑐 < 0. So neither player invests.
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Fig. 4. Investment regions in a symmetric environment with 𝑐 = 1∕5, 𝑟 = 1∕5 and posterior beliefs induced by 𝐵𝑒𝑡𝑎(1 + 𝜃,1 + (1 − 𝜃)).

Proposition 6. There exists 𝛾 such that a dynamic equilibrium exists if and only if 𝛾 > 𝛾 . As 𝛾 →∞, the probability of initial agreement 
converges to 1.

4.3. Welfare

A natural question is how welfare, defined as the sum of the two players’ ex ante equilibrium payoffs, changes as precision 
increases. In what follows, I derive a limiting result: the welfare of the dynamic equilibrium approaches the full-efficiency payoff as 
precision gets arbitrarily high.

As information gets arbitrarily precise, by Proposition 6, the probability of initial agreement converges to 1; by Proposition 5, 
players reach an agreement faster if they had disagreed initially. Both players learn the state almost surely upon receiving the signals 
and are very likely to invest in the good state and not invest in the bad state right at time 0, which is the full-efficiency outcome, 
with payoff denoted by ∗ = 1 − 𝑐.

Proposition 7. As 𝛾 →∞, the welfare of the dynamic equilibrium converges to the full-efficiency payoff ∗.

Numerical examples suggest the welfare is increasing in precision. The limiting result Proposition 7, albeit seemingly intuitive, 
does not hold for all equilibria because of coordination. In particular, the no-investment equilibrium always generates 0 payoff, and 
all equilibria that do not start at time 0 will always fall short of the full-efficiency payoff regardless of how precise information gets.

5. Benchmarks and extensions

5.1. Constrained efficiency

Consider a social planner who does not observe the signals or the true state 𝜃 and who seeks to maximize the sum of the expected 
payoff of the two players. The optimal mechanism, which is also incentive compatible, is straightforward. Each player truthfully 
reports his signal to the social planner; given the signals 𝑠𝑖 and 𝑠𝑗 , the social planner recommends investing at 𝑡 = 0 to both players 
if the expected return from investing is higher than the cost, Pr(𝜃 = 1|𝑠𝑖, 𝑠𝑗 )𝐻 − Pr(𝜃 = 0|𝑠𝑖, 𝑠𝑗 )𝐿 ≥ 𝑐, and not investing for any 𝑡 ≥ 0
otherwise.

This constrained efficient outcome features efficient information aggregation, no delay, and no coordination failure. How is the 
eventual outcome of the equilibrium (whether the two players eventually invest or not21) different from the constrained efficient 
outcome? To illustrate, Fig. 4 plots the eventual investment region (the complement is the no-investment region) in the type space. 
In the area above the blue curve, players eventually both invest in equilibrium. In the area above the red curve, players both invest 
right away in the constrained efficient outcome.

The eventual outcome of the equilibrium differs from the constrained efficient outcome in two ways. The first one is under-

investment due to lack of information aggregation. In area (A), players invest in the constrained efficient outcome, but do not in 
equilibrium. Players are optimistic, but not optimistic enough without information about the other player. The second case is over-

investment due to inefficient information aggregation. In area (B), the follower eventually invests in equilibrium but does not in the 
constrained efficient outcome. In equilibrium, the follower knows the leader’s type is above a certain value, which makes him more 

21 To be specific, in equilibrium, the outcome “eventual investment” is the events that both players invest initially and the follower invests before the leader 
152

disinvests. “Eventual no-investment” is the events that neither player invests initially and the leader disinvests before the follower invests.
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optimistic than knowing it is equal to that value as in the constrained efficient outcome. This leads to over-investment by some lower 
types of the follower.

5.2. Reversibility of investments

5.2.1. Irreversible investments

The reversibility of investment is crucial for generating the dynamics in the continuation game. If investment is irreversible, all 
actions occur at time 0. A player invests initially if his type is above a threshold 𝑥ir, and the other player follows suit if his type 
is above a threshold 𝑦ir with 𝑦ir < 𝑥ir. Information revelation is coarse and occurs in a single burst at time 0.22 (𝑥ir and 𝑦ir are 
characterized in the Appendix.)

Compared to the investing behavior at time 0 in the dynamic equilibrium, the inability to exit from a potentially unprofitable 
investment deters some lower types of the leader from investing initially. In turn, an initial investment is better news and encourages 
more follower types to follow suit. Proposition 8 formalizes this intuition.

Proposition 8. If (𝑧, (𝑥(𝑡), 𝑦(𝑡))𝑡≥0) is the equilibrium with reversible investment and (𝑥ir, 𝑦ir) is an equilibrium with irreversible investment, 
then 𝑥ir > 𝑥(0) and 𝑦ir < 𝑦(0).

I conclude the discussion with the remark that the equilibrium with irreversible investment might sometimes generate higher 
welfare than the dynamic equilibrium with reversible investment. In particular, if information is imprecise, irreversible investment 
might perform better. On the one hand, reversibility allows players to engage in observational learning about each other’s private 
information; on the other hand, irreversibility acts as a commitment device and eliminates strategic uncertainty. The players benefit 
from observational learning generated by reversible investments when their information is valuable to learn. If the precision of 
information is low, the benefit of commitment from irreversible investments might outweigh.

5.2.2. Multiple opportunities to reverse

Analyzing multiple opportunities to reverse a decision in a dynamic setting with both payoff and informational externalities poses 
challenges. In what follows, I provide some insights into the case where the leader can reinvest after disinvesting.

First, the equilibrium characterized in Section 3 remains an equilibrium. Because of coordination, it is an equilibrium that the 
players adopt the strategies in Section 3 and never invest once the leader disinvests for the first time. In addition, future reinvestments 
can also be eliminated by imposing a large reinvestment cost that renders it suboptimal for the leader to do so.

In cases where reinvestment is not precluded in equilibrium and the associated cost is not too large, one can construct a monotonic 
equilibrium where at the beginning of the leader-follower continuation game, higher types of leader disinvest and reinvest immedi-

ately afterward, and lower types of leader stay invested. By “disinvesting and reinvesting,” the leader “burns money” to signal his 
type more strongly, which induces a higher probability of the follower following suit compared to staying invested. A higher type of 
leader is more optimistic about the state, and is therefore more willing to pay the reinvestment cost to signal such information. This 
is consistent with the notion that once a player’s role as the leader or the follower is determined, by MLRP, the leader’s incentive to 
invest (or stay invested) should be monotonic in his belief about the good state.

5.3. Communication

To better illustrate the strategic upshot of the informational externality and understand the tension between the players, consider 
a scenario where the players can communicate their private information with each other through cheap talk. At the outset, the 
players’ interests are aligned. If the players can communicate at the beginning of the game prior to taking any actions, it is an 
equilibrium that they truthfully reveal their signals to each other. However, truthtelling is not an equilibrium if communication 
occurs after the initial investment decisions. The leader has paid the investment cost and the follower has not, this difference creates 
a conflict of interest between them and result in them wanting to mislead each other systematically in one direction or the other.

In particular, the leader has an incentive to misreport his true signal upward while the follower downward. Given the two players’ 
private signals, the leader wants the follower to invest if the expected return of the investment disregarding the cost is positive; the 
follower, on the other hand, only wants to invest if the expected return net of the cost is positive. As a result, the leader overstates 
his optimism, inducing the follower to invest when he would not have had the leader told him the truth; similarly, the follower 
overstates his pessimism, inducing more of the lower leader types to disinvest, learning that investment is profitable if the leader 
stays invested.

5.4. Flow cost of investment

In this section, I characterize the equilibrium in a setting where the leader incurs a flow cost of investment 𝜂 > 0 while staying 
invested. I call this a flow-cost equilibrium. I also illustrate by example that this equilibrium converges in strategies to the equilibrium 
characterized in Theorem 1, referred to as the no-flow-cost equilibrium.
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22 One can show there exists a perfect Bayesian equilibrium in a model with no discounting that has the same outcome as this irreversible investment equilibrium.
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Fig. 5. Flow-cost equilibrium (inverse) strategies in a symmetric environment with 𝑐 = 1∕5, 𝑟 = 1∕5, and 𝜂 = 1∕20 and posterior beliefs distributed according to 
𝐵𝑒𝑡𝑎(1 + 𝜃, 1 + (1 − 𝜃)).

To obtain a direct comparison with the no-flow-cost equilibrium, I focus on strictly monotonic and differentiable strategies and 
parameters such that the no-flow-cost equilibrium exists. The following theorem characterizes the flow-cost equilibrium.

Theorem 2. Fix a flow cost of investment 𝜂 > 0 for the leader. There exists a monotonic symmetric dynamic equilibrium where the inverse 
strategies (𝑧, (𝑥(𝑡), 𝑦(𝑡))𝑡≥0) ∈ (0, 1) × (0, 1)∞ × (0, 1)∞ are such that

(i) the initial values 𝑧, 𝑥(0), and 𝑦(0) satisfy

𝑦(0) < 𝑧 = 𝑥(0), 𝑊0(𝑥(0), 𝑦(0)) = 𝑐; (8)

(ii) for all 𝑡 ≥ 0, 𝑥(𝑡) is a strictly increasing and differentiable function and 𝑦(𝑡) is a strictly decreasing and differentiable function that solve 
the system of differential equations

𝑥′(𝑡) = 𝜙(𝑥(𝑡), 𝑦(𝑡)), 𝑦′(𝑡) = 𝜓(𝑥(𝑡), 𝑦(𝑡)). (9)

(𝑊0, 𝜙, and 𝜓 are defined in the Online Appendix.)

A general property of this equilibrium is 𝑥′(𝑡) → 0 and 𝑦′(𝑡) → 0 as 𝑡 →∞. The initial values 𝑥(0) and 𝑦(0) must be that there 
exists a solution to the differential system (9) that satisfies this property. This is a “global boundary condition” and is similar to the 
one characterized in Bobtcheff et al. (2017). Under some condition on the primitives (specified in the Online Appendix), this global 
solution is unique. For the rest of the analysis, assume this condition for uniqueness holds.

The effect of a positive flow cost is most prominent in the symmetric environment. Without a flow cost, it is costless for both the 
leader and the follower to stay in the game. This feature is necessary for the symmetry of the two players’ equilibrium strategies, 
namely, 𝑥(𝑡) = 1 − 𝑦(𝑡). A flow cost breaks this symmetry. While staying in the leader-follower continuation game is still costless for 
the follower, it is now costly for the leader. Fig. 5 plots the unique flow-cost equilibrium in a symmetric environment. The dotted 
curve below 𝑥(𝑡) is 1 − 𝑦(𝑡), which is auxiliary to bring out the now-existing asymmetry in the leader’s and the follower’s strategies.

Convergence to the no-flow-cost equilibrium To compare with the no-flow-cost equilibrium, I denote the (unique) flow-cost equilibrium 
(inverse) strategies with 𝜂 > 0 by 𝑥(𝑡, 𝜂) and 𝑦(𝑡, 𝜂), and the (unique) no-flow-cost equilibrium by 𝑥(𝑡, 0) and 𝑦(𝑡, 0). In what follows, I 
present an example where the equilibrium (inverse) strategies 𝑥(𝑡, 𝜂) and 𝑦(𝑡, 𝜂) converge to 𝑥(𝑡, 0) and 𝑦(𝑡, 0) as 𝜂 converges to 0 for 
𝑡 ≥ 0.

This convergence might not be as straightforward as one’s intuition suggests. The flow-cost equilibrium (inverse) strategies 𝑥(𝑡, 𝜂)
and 𝑦(𝑡, 𝜂) converge to the boundary points 1 and 0 as 𝑡 → ∞ for any 𝜂 > 0 for any 𝑐. However, this is not always the case for 
the no-flow-cost equilibrium. In particular, when 𝑐 is relatively high, 𝑥(𝑡, 0) and 𝑦(𝑡, 0) converge to interior points 𝑥̄ < 1 and 𝑦 > 0
as 𝑡 → ∞. In a numerical example with Beta distributions, albeit seemingly contradictory, the no-flow-cost equilibrium (inverse) 
strategies 𝑥(𝑡, 𝜂) and 𝑦(𝑡, 𝜂) converge to the flow-cost equilibrium 𝑥(𝑡, 0) and 𝑦(𝑡, 0) as the flow cost 𝜂 decreases to 0 for any 𝑐.

The key observation is, the values that 𝑥(𝑡, 𝜂) and 𝑦(𝑡, 𝜂) converge to depend on the order in which the limits of 𝑡 and 𝜂 are 
taken. Take the leader’s strategy 𝑥(𝑡, 𝜂) for example. Although for any 𝜂 > 0, as 𝑡 → ∞, 𝑥(𝑡, 𝜂) → 1 while 𝑥(𝑡, 0) may converge to 
𝑥̄ < 1, 𝑥(𝑡, 𝜂) → 𝑥(𝑡, 0) pointwise as 𝜂 → 0 for any 𝑡 ≥ 0. The latter suggests the flow-cost equilibrium converges in strategies to the 
no-flow-cost equilibrium as the flow cost decreases to zero.
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Appendix A

A.1. Proofs for Section 3

A.1.1. Preliminaries

I first establish a useful implication of MLRP, which says knowing the signal is equal to 𝑧 is worse news than knowing the signal is 
in an interval above 𝑧, and is better news than knowing the signal is in an interval below 𝑧. The proof follows directly from applying 
MLRP and is omitted.

Lemma 5. By MLRP, 𝑧̂ > 𝑧 if and only if

𝑓 0(𝑧)
𝑓 1(𝑧)

>
𝐹 0(𝑧̂) − 𝐹 0(𝑧)
𝐹 1(𝑧̂) − 𝐹 1(𝑧)

>
𝑓 0(𝑧̂)
𝑓 1(𝑧̂)

.

The following two assumptions will be used frequently in this section. First, recall that if the leader and the follower stop 
simultaneously, the leader gets 0 and the follower gets −𝑐. Second, the (indifference) tie-breaking rule says if the leader is indifferent 
between stopping at 𝑡′ and at 𝑡′′ > 𝑡′, he stops at 𝑡′.

A.1.2. Proof of Lemma 1

Note that the follower’s payoff from investing at any 𝑡 ≥ 𝑇𝐿 is −𝑐 < 0. So for any follower 𝑦, either 𝜎𝐹 (𝑦) < 𝑇𝐿 or 𝜎𝐹 (𝑦) = ∞. 
𝑇𝐹 = inf 𝑡

{
𝑡 ∶𝐺𝐹 (𝑡) =𝐺𝐹 (𝑇𝐿)

} ≤ 𝑇𝐿. Given 𝑇𝐹 , the leader is indifferent between disinvesting at any 𝑡 ≥ 𝑇𝐹 . By the (indifference) 
tie-breaking rule, leader disinvests at 𝑇𝐹 . 𝑇𝐿 = inf 𝑡{𝑡 ∶𝐺𝐿(𝑡) =𝐺𝐿(𝑇𝐹 )} ≤ 𝑇𝐹 .

A.1.3. Proof of Lemma 2

Lemma 6 establishes weak monotonicity of the strategies.

Lemma 6. 𝜎𝐿(𝑥) is non-decreasing and 𝜎𝐹 (𝑦) is non-increasing.

The proof of Lemma 6 follows from a standard revealed preference argument and is relegated to the Online Appendix. In what 
follows, I prove the 𝜎𝑖 ’s are strictly monotone. This is equivalent to proving 𝑖’s equilibrium distribution of stopping time is non-atomic 
at any 𝑡 ∈ (0, 𝑇 ] for 𝑖 ∈ {𝐿, 𝐹 }. There cannot be an atom at 𝑡 = 0 because by construction, an atom at 𝑡 = 0 is not well-defined in the 
leader-follower continuation game with 𝑠𝐿 ≥ 𝑥(0) and 𝑠𝐹 ≤ 𝑦(0).23

A.1.4. Leader’s equilibrium distribution of stopping time is non-atomic

The idea of the proof is as follows. If there is an atom at 𝑡 in the leader’s distribution of stopping time, either there is a mass 
of follower types that don’t have a best response, or there does not exist a follower who invests in [𝑡 − 𝛿, ̂𝑡]. By the (indifference) 
tie-breaking rule, the leader stops at 𝑡− 𝛿, which contradicts a mass of leader stopping at 𝑡. I now present the proof formally.

Suppose there is an atom at 𝑡 ∈ (0, 𝑇 ] in the leader’s equilibrium distribution of stopping time. At the beginning of the leader-

follower game, the follower’s information set consists of his private signal 𝑦 and the observation that the leader has invested. Denote 
the follower of type 𝑦’s belief by 𝑞𝐹 (𝑦) ∶= Pr(𝜃 = 1|𝑦, 𝑥 ≥ 𝑥(0)). Let 𝐴(𝑦, ̂𝑡) denote the jump in 𝑦’s expected payoff from investing at 𝑡
and 𝐶(𝑦, ̂𝑡) the expected cost from investing at 𝑡,

𝐴(𝑦, 𝑡) ∶=𝑞𝐹 (𝑦)Pr(𝜎𝐿(𝑥) = 𝑡|𝜃 = 1, 𝑥 ≥ 𝑥(0))𝐻

− (1 − 𝑞𝐹 (𝑦))Pr(𝜎𝐿(𝑥) = 𝑡|𝜃 = 0, 𝑥 ≥ 𝑥(0))𝐿;

𝐶(𝑦, 𝑡) ∶=
(
𝑞𝐹 (𝑦)Pr(𝜎𝐿(𝑥) = 𝑡|𝜃 = 1, 𝑥 ≥ 𝑥(0))

+ (1 − 𝑞𝐹 (𝑦))Pr(𝜎𝐿(𝑥) = 𝑡|𝜃 = 0, 𝑥 ≥ 𝑥(0))
)
𝑐.

Follower 𝑦’s expected payoffs from investing at 𝑡− 𝜀, at 𝑡, and at 𝑡+ 𝜀 are respectively24

23 The time 0 here is not the calendar time 0 and is thus not the proper beginning of a stage. So a mass of types stopping at 𝑡 = 0 of this continuation game is not a 
well-defined strategy.
24 If 𝑡 = 𝑇 , for 𝜃 ∈ {0, 1}, Pr(𝜎𝐿(𝑥) > 𝑇 |𝜃, 𝑥 ≥ 𝑥(0)) = 0, which means Pr(𝜎𝐿(𝑥) ≥ 𝑇 |𝜃, 𝑥 ≥ 𝑥(0)) = Pr(𝜎𝐿(𝑥) = 𝑇 |𝜃, 𝑥 ≥ 𝑥(0)). So −(𝑦, 𝑇 ) = 𝑒−𝑟𝑇 (𝐴(𝑦, 𝑇 ) −𝐶(𝑦, 𝑇 )), 
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+(𝑦, 𝑇 ) < 0, and  (𝑦, 𝑡) < 0 for all 𝑡 ≥ 𝑇 . The rest of the argument follows.
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−(𝑦, 𝑡) ∶= lim
𝜀→0

 (𝑦, 𝑡− 𝜀) = 𝑒−𝑟𝑡
(
𝑞𝐹 (𝑦)Pr(𝜎𝐿(𝑥) ≥ 𝑡|𝜃 = 1, 𝑥 ≥ 𝑥(0))(𝐻 − 𝑐)

− (1 − 𝑞𝐹 (𝑦))Pr(𝜎𝐿(𝑥) ≥ 𝑡|𝜃 = 0, 𝑥 ≥ 𝑥(0))(𝐿+ 𝑐)
)
,

 (𝑦, 𝑡) = −(𝑦, 𝑡) − 𝑒−𝑟𝑡𝐴(𝑦, 𝑡),

+(𝑦, 𝑡) ∶= lim
𝜀→0

 (𝑦, 𝑡+ 𝜀) =  (𝑦, 𝑡) + 𝑒−𝑟𝑡𝐶(𝑦, 𝑡) = −(𝑦, 𝑡) − 𝑒−𝑟𝑡(𝐴(𝑦, 𝑡) −𝐶(𝑦, 𝑡)).

By strict MLRP and that the 𝑓𝜃 ’s are continuous, 𝐴(𝑦, ̂𝑡) −𝐶(𝑦, ̂𝑡) is strictly increasing and continuous in 𝑦. Because the likelihood 
ratio is unbounded, lim𝑦→0𝐴(𝑦, ̂𝑡) −𝐶(𝑦, ̂𝑡) < 0. Because 𝑦(0) optimally stops at 𝑡 = 0,  (𝑦(0), 0) > 0, together with Lemma 5 and 𝜎𝐿(𝑥)
non-decreasing, 𝐴(𝑦(0), ̂𝑡) − 𝐶(𝑦(0), ̂𝑡) > 0. So there exists a unique 𝑦̂ ∈ (0, 𝑦(0)) such that 𝐴(𝑦̂, ̂𝑡) − 𝐶(𝑦̂, ̂𝑡) = 0, 𝐴(𝑦, ̂𝑡) − 𝐶(𝑦, ̂𝑡) < 0 for 
all 𝑦 ∈ (0, 𝑦̂), and 𝐴(𝑦, ̂𝑡) −𝐶(𝑦, ̂𝑡) > 0 for all 𝑦 ∈ (𝑦̂, 𝑦(0)).

Claim 1. For all 𝑦 such that 𝐴(𝑦, ̂𝑡) −𝐶(𝑦, ̂𝑡) ≥ 0, sup𝑡>𝑡  (𝑦, 𝑡) = +(𝑦, ̂𝑡).

Proof. Let 𝑦 be 𝐴(𝑦, ̂𝑡) −𝐶(𝑦, ̂𝑡) ≥ 0. 𝑦’s expected payoff from investing at 𝑡 > 𝑡 is

 (𝑦, 𝑡) =𝑒−𝑟𝑡
(
𝑞𝐹 (𝑦)Pr(𝜎𝐿(𝑥) > 𝑡|𝜃 = 1, 𝑥 ≥ 𝑥(0))(𝐻 − 𝑐)

− (1 − 𝑞𝐹 (𝑦))Pr(𝜎𝐿(𝑥) > 𝑡|𝜃 = 0, 𝑥 ≥ 𝑥(0))(𝐿+ 𝑐)
)

− 𝑒−𝑟𝑡
(
𝑞𝐹 (𝑦)Pr(𝑡 < 𝜎𝐿(𝑥) < 𝑡|𝜃 = 1, 𝑥 ≥ 𝑥(0))(𝐻 − 𝑐)

− (1 − 𝑞𝐹 (𝑦))Pr(𝑡 < 𝜎𝐿(𝑥) < 𝑡|𝜃 = 0, 𝑥 ≥ 𝑥(0))(𝐿+ 𝑐)
)

− 𝑒−𝑟𝑡𝐴(𝑦, 𝑡).

+(𝑦, ̂𝑡) can be written as

+(𝑦, 𝑡) =𝑒−𝑟𝑡
(
𝑞𝐹 (𝑦)Pr(𝜎𝐿(𝑥) > 𝑡|𝜃 = 1, 𝑥 ≥ 𝑥(0))(𝐻 − 𝑐)

− (1 − 𝑞𝐹 (𝑦))Pr(𝜎𝐿(𝑥) > 𝑡|𝜃 = 0, 𝑥 ≥ 𝑥(0))(𝐿+ 𝑐)
)
.

𝜎𝐿(𝑥) non-decreasing and 𝐴(𝑦, ̂𝑡) −𝐶(𝑦, ̂𝑡) ≥ 0 imply +(𝑦, ̂𝑡) ≥ 0. 𝑒−𝑟𝑡 > 𝑒−𝑟𝑡 so the first term in  (𝑦, 𝑡) is less than +(𝑦, ̂𝑡). The second 
term in  (𝑦, 𝑡) is negative by Lemma 5. For the third term, 𝐴(𝑦, 𝑡) = 0 if there is no atom at 𝑡. Otherwise, 𝐴(𝑦, ̂𝑡) ≥ 𝐶(𝑦, ̂𝑡) > 0 implies 
𝐴(𝑦, 𝑡) > 0 for 𝑡 > 𝑡. □

For type 𝑦̂,  (𝑦̂, ̂𝑡) < −(𝑦̂, ̂𝑡) = +(𝑦̂, ̂𝑡). By Claim 1, +(𝑦̂, ̂𝑡) is the supremum over 𝑡 for 𝑡 > 𝑡, so  (𝑦̂, 𝑡) cannot attain a maximum 
at 𝑡 > 𝑡. Therefore, either (i)  (𝑦̂, 𝑡) attains a maximum in [0, ̂𝑡], or (ii)  (𝑦̂, 𝑡) does not attain a maximum in [0, ̂𝑡].

Case (i) By definition, 𝐶(𝑦, ̂𝑡) > 0 for all 𝑦, so +(𝑦, ̂𝑡) >  (𝑦, ̂𝑡) for all 𝑦. If  (𝑦̂, 𝑡) attains a maximum at some 𝑡∗ ∈ [0, ̂𝑡], it must be 
that 𝑡∗ < 𝑡. Because 𝜎𝐹 (𝑦) is non-increasing, if 𝑦̂ invests at 𝑡∗, then all 𝑦 > 𝑦̂ will invest (at or) before 𝑡∗ and all 𝑦 < 𝑦̂ will invest (at 
or) after 𝑡∗. So the only types who might invest in (𝑡∗, ̂𝑡] are 𝑦 < 𝑦̂. For 𝑦 < 𝑦̂, 𝐴(𝑦, ̂𝑡) − 𝐶(𝑦, ̂𝑡) < 0, which implies −(𝑦, ̂𝑡) < +(𝑦, ̂𝑡). 
So if investing at some 𝑡∗∗ ∈ (𝑡∗, ̂𝑡] is optimal, it must be that  (𝑦, 𝑡∗∗) ≥ +(𝑦, ̂𝑡) > −(𝑦, ̂𝑡) if +(𝑦, ̂𝑡) ≥ 0, or  (𝑦, 𝑡∗∗) ≥ 0 > −(𝑦, ̂𝑡)
if +(𝑦, ̂𝑡) < 0. Either way, there exists a 𝛿 > 0 small such that 𝑡∗∗ ∉ [𝑡 − 𝛿, ̂𝑡]. This implies there does not exist a 𝑦 such that 
𝜎𝐹 (𝑦) ∈ [𝑡 − 𝛿, ̂𝑡]. This means the leader is indifferent between stopping at 𝑡 − 𝛿 and 𝑡. By the (indifference) tie-breaking rule, the 
leader stops at 𝑡− 𝛿, which contradicts the hypothesis that there is a mass of leader types stopping at 𝑡.

Case (ii) Suppose  (𝑦̂, 𝑡) doesn’t attain a maximum in [0, ̂𝑡]. Consider the incentive of the types that are higher than 𝑦̂. Fix 𝑦 > 𝑦̂. 
Then 𝐴(𝑦, ̂𝑡) − 𝐶(𝑦, ̂𝑡) > 0, which implies −(𝑦, ̂𝑡) > +(𝑦, ̂𝑡) > 0 and −(𝑦, ̂𝑡) >  (𝑦, ̂𝑡). Claim 1 states that +(𝑦, ̂𝑡) is the supremum 
over 𝑡 for all 𝑡 > 𝑡. There are two sub-cases.

First, all  (𝑦, 𝑡) with 𝑦 > 𝑦̂ up to sets of measure zero attain a maximum in [0, ̂𝑡]. If  (𝑦, 𝑡) attains a maximum at 𝑡∗ ∈ [0, ̂𝑡], it 
must be that  (𝑦, 𝑡∗) ≥ −(𝑦, ̂𝑡) > 0 and 𝑡∗ < 𝑡. So there exists a 𝛿 > 0 small such that 𝑡∗ ∉ [𝑡 − 𝛿, ̂𝑡], which is a contradiction by 
the same argument as case (i). Second, there exists a positive measure of follower types 𝑦 with 𝑦 > 𝑦̂ such that  (𝑦, 𝑡) does not 
attain a maximum in [0, ̂𝑡]. Then −(𝑦, ̂𝑡) is the supremum of  (𝑦, 𝑡) for all 𝑡. However, this supremum cannot be achieved: because 
𝐴(𝑦, ̂𝑡) > 𝐶(𝑦, ̂𝑡) > 0,  (𝑦, ̂𝑡) = −(𝑦, ̂𝑡) − 𝑒−𝑟𝑡𝐴(𝑦, ̂𝑡) < −(𝑦, ̂𝑡).

A.1.5. Follower’s equilibrium distribution of stopping time is non-atomic

Leader of type 𝑥’s expected payoff from stopping at any 𝑡 can be written as

(𝑥, 𝑡) =
𝑡

∫
0

𝑒−𝑟𝜏
(
dPr(𝜃 = 1, 𝜎𝐹 (𝑦) < 𝜏|𝑥, 𝑦 ≤ 𝑦(0))𝐻

− dPr(𝜃 = 0, 𝜎𝐹 (𝑦) < 𝜏|𝑥, 𝑦 ≤ 𝑦(0))𝐿
)
.

For a fixed 𝑥, by the (first) fundamental theorem of calculus, (𝑥, 𝑡) is differentiable at every 𝑡 where the integrand is continuous. Its 
derivative with respect to 𝑡, whenever exists, is given by the integrand evaluated at 𝑡, which can be written as 𝑒−𝑟𝑡 lim𝜀→0(Pr(𝜎𝐹 (𝑦) ∈
156

(𝑡 − 𝜀, 𝑡]|𝑥, 𝑦 ≤ 𝑦(0))∕𝜀) ⋅𝐵(𝑥, 𝑡), where



Games and Economic Behavior 144 (2024) 141–166B. Zhou

𝐵(𝑥, 𝑡) ∶= Pr(𝜃 = 1|𝑥,𝜎𝐹 (𝑦) = 𝑡)𝐻 − Pr(𝜃 = 0|𝑥,𝜎𝐹 (𝑦) = 𝑡)𝐿.

In words, 𝐵(𝑥, 𝑡) is leader 𝑥’s expected return conditional on the follower investing at 𝑡. Thus, the derivative of (𝑥, 𝑡) at 𝑡 is 
proportional to 𝐵(𝑥, 𝑡) when lim𝜀→0 Pr(𝜎𝐹 (𝑦) ∈ (𝑡 − 𝜀, 𝑡]|𝑥, 𝑦 ≤ 𝑦(0))∕𝜀 > 0, and is equal to zero when this probability is zero.

Suppose there is an atom at 𝑡 ∈ (0, 𝑇 ] in the follower’s equilibrium distribution of stopping time. That is, 𝜎𝐹 (𝑦) = 𝑡 for all 
𝑦 ∈ [𝑦′, 𝑦′′] with 0 < 𝑦′ < 𝑦′′ ≤ 𝑦(0). 𝑥’s expected payoff from stopping at 𝑡 is (𝑥, ̂𝑡), and from stopping at 𝑡+ 𝜀 is

lim
𝜀→0

(𝑥, 𝑡+ 𝜀) = (𝑥, 𝑡) + 𝑒−𝑟𝑡
(
Pr(𝜎𝐹 (𝑦) = 𝑡|𝑥, 𝑦 ≤ 𝑦(0)) ⋅𝐵(𝑥, 𝑡)

)
,

where Pr(𝜎𝐹 (𝑦) = 𝑡|𝑥, 𝑦 ≤ 𝑦(0)) = Pr(𝑦 ∈ [𝑦′, 𝑦′′]|𝑥, 𝑦 ≤ 𝑦(0)) > 0 and

𝐵(𝑥, 𝑡) = Pr(𝜃 = 1|𝑥, 𝑦 ∈ [𝑦′, 𝑦′′])𝐻 − Pr(𝜃 = 0|𝑥, 𝑦 ∈ [𝑦′, 𝑦′′])𝐿.

Define the left limit of 𝐵(𝑥, ̂𝑡) as 𝐵−(𝑥, ̂𝑡),

𝐵−(𝑥, 𝑡) ∶= lim
𝑡→𝑡−

𝐵(𝑥, 𝑡) = Pr(𝜃 = 1|𝑥, 𝑦 = 𝑦′′)𝐻 − Pr(𝜃 = 0|𝑥, 𝑦 = 𝑦′′)𝐿.

I first show there is a positive measure of leader types that satisfy 𝐵−(𝑥, ̂𝑡) > 0 > 𝐵(𝑥, ̂𝑡). By Lemma 5, for all 𝑥, 𝐵−(𝑥, ̂𝑡) > 𝐵(𝑥, ̂𝑡). 
By strict MLRP and because the 𝑓𝜃 ’s are continuous, 𝐵(𝑥, ̂𝑡) is strictly increasing and continuous in 𝑥. Because the likelihood ratio 
is unbounded, lim𝑥→1𝐵(𝑥, ̂𝑡) > 0. Because 𝑥(0) optimally stops at 𝑡 = 0, 𝐵(𝑥(0), 0) = 0, together with Lemma 5 and 𝜎𝐹 (𝑦) non-

increasing, 𝐵(𝑥(0), ̂𝑡) < 0. So there exists a unique 𝑥̂ ∈ (𝑥(0), 1) such that 𝐵(𝑥̂, ̂𝑡) = 0. Similarly, there exists a unique 𝑥̂− ∈ (𝑥(0), 1)
such that 𝐵−(𝑥̂−, ̂𝑡) = 0. Moreover, 𝑥̂− < 𝑥̂ by MLRP. So for all 𝑥 ∈ (𝑥̂−, 𝑥̂), 𝐵−(𝑥, ̂𝑡) > 0 >𝐵(𝑥, ̂𝑡).

Next, I show for all 𝑥 ∈ (𝑥̂−, 𝑥̂), 𝑥 stops at 𝑡. Because 𝜎𝐹 (𝑦) is non-increasing, 𝐵(𝑥, 𝑡) is non-increasing in 𝑡. Then 𝐵(𝑥, 𝑡) ≥𝐵−(𝑥, ̂𝑡) >
0 for all 𝑡 < 𝑡 and 𝐵(𝑥, 𝑡) ≤ 𝐵(𝑥, ̂𝑡) < 0 for all 𝑡 > 𝑡. This implies 𝑥’s expected payoff from stopping at 𝑡 is increasing in 𝑡 for 𝑡 < 𝑡 and 
decreasing for 𝑡 > 𝑡. If 𝑥 has a best response, it can only be at 𝑡. 𝐵(𝑥, ̂𝑡) < 0 implies lim𝜀→0(𝑥, ̂𝑡+ 𝜀) <(𝑥, ̂𝑡). So sup𝑡(𝑥, 𝑡) = (𝑥, ̂𝑡).

Thus, there exists a positive measure of leader types who stop at 𝑡, which contradicts the leader’s distribution of stopping time 
being non-atomic.

A.1.6. Proof of Lemma 3

Recall that by definition 𝐺𝐿(𝑡) = Pr(𝜎𝐿(𝑥) ≤ 𝑡|𝑥 ≥ 𝑥(0)) and 𝐺𝐹 (𝑡) = Pr(𝜎𝐹 (𝑦) ≤ 𝑡|𝑦 ≤ 𝑦(0)), and 𝐺𝜃
𝐿
(𝑡) = Pr(𝜎𝐿(𝑥) ≤ 𝑡|𝜃, 𝑥 ≥ 𝑥(0))

and 𝐺𝜃
𝐹
(𝑡) = Pr(𝜎𝐹 (𝑦) ≤ 𝑡|𝜃, 𝑦 ≤ 𝑦(0)) for 𝜃 ∈ {0, 1}. To simplify notation, let  (𝑦, 𝑡) = 𝑒−𝑟𝑡(𝑦, 𝑡) where (𝑦, 𝑡) ∶= 𝑞𝐹 (𝑦)(1 −𝐺1

𝐿
(𝑡))(𝐻 −

𝑐) − (1 − 𝑞𝐹 (𝑦))(1 −𝐺0
𝐿
(𝑡))(𝐿 + 𝑐).

I first show if 𝐺𝑖 is constant on [𝑡′, 𝑡′′], 𝐺−𝑖 is constant on [𝑡′, 𝑡′′] for 0 < 𝑡′ < 𝑡′′ < 𝑇 .

Suppose 𝐺𝐿(𝑡), thus 𝐺𝜃
𝐿
(𝑡), is constant on [𝑡′, 𝑡′′]. So (𝑦, 𝑡) is constant on [𝑡′, 𝑡′′]. For 𝑡 ∈ [𝑡′, 𝑡′′], fix 𝑦 such that (𝑦, 𝑡) > 0, then 

 (𝑦, 𝑡′) >  (𝑦, 𝑡) > 0 for all 𝑡 ∈ (𝑡′, 𝑡′′], so investing at any 𝑡 ∈ (𝑡′, 𝑡′′] is dominated by investing at 𝑡′. If (𝑦, 𝑡) < 0, investing at any 
𝑡 ∈ [𝑡′, 𝑡′′] is dominated by not investing. By strict MLRP, the set of 𝑦’s that satisfy (𝑦, 𝑡) = 0 is of measure zero. Thus, there does not 
exist a positive measure of follower types that invest in (𝑡′, 𝑡′′], which means 𝐺𝐹 (𝑡) is constant on [𝑡′, 𝑡′′].

Suppose 𝐺𝐹 (𝑡) is constant on [𝑡′, 𝑡′′]. By the (indifference) tie-breaking rule, for any leader 𝑥 such that disinvesting at any 
𝑡 ∈ [𝑡′, 𝑡′′] is optimal, 𝑥 disinvests at 𝑡′. So no leader will disinvest in (𝑡′, 𝑡′′], which means 𝐺𝐿(𝑡) is constant on [𝑡′, 𝑡′′].

Next, I show that there does not exist an interval [𝑡′, 𝑡′′] with 0 < 𝑡′ < 𝑡′′ < 𝑇 such that both 𝐺𝐹 and 𝐺𝐿 are constant. Suppose the 
contrary and let 𝑡 be the supremum of 𝑡′′ for which over [𝑡′, 𝑡′′], 𝐺𝐿 and 𝐺𝐹 are constant.

Fix 𝑦 such that (𝑦, 𝑡) > 0, so  (𝑦, 𝑡′) >  (𝑦, 𝑡) for all 𝑡 ∈ (𝑡′, ̄𝑡]. In particular,  (𝑦, 𝑡′) >  (𝑦, ̄𝑡). By Lemma 2,  (𝑦, 𝑡) is continuous 
in 𝑡, so for 𝛿 > 0, lim𝛿→0  (𝑦, ̄𝑡 + 𝛿) =  (𝑦, ̄𝑡) <  (𝑦, 𝑡′). So investing at any 𝑡 ∈ [𝑡, ̄𝑡 + 𝛿] is dominated by investing at 𝑡′. If (𝑦, 𝑡) < 0, 
 (𝑦, 𝑡′) <  (𝑦, ̄𝑡) < 0 for all 𝑡 ∈ (𝑡′, ̄𝑡]. lim𝛿→0  (𝑦, ̄𝑡+ 𝛿) =  (𝑦, ̄𝑡) < 0, so investing at 𝑡 ∈ [𝑡, ̄𝑡+ 𝛿] is dominated by not investing. There 
does not exist a positive measure of follower types that invest in [𝑡, ̄𝑡 + 𝛿]. This means 𝐺𝐹 is constant on [𝑡′, ̄𝑡 + 𝛿], so 𝐺𝐿 is also 
constant on [𝑡′, ̄𝑡+ 𝛿]. This contradicts the definition of 𝑡.

A.1.7. Proof of Proposition 2

Differentiability

First, consider the leader’s incentive. Recall the proof of Lemma 2. By Lemma 2 and Lemma 3, for any fixed 𝑥, 𝑥’s expected payoff 
(𝑥, 𝑡) is differentiable everywhere in 𝑡 ∈ (0, 𝑇 ). The first-order condition 𝐵(𝑥(𝑡), 𝑡) = 0 implies

𝑓 1(𝑥(𝑡))
𝑓 0(𝑥(𝑡))

𝑓 1(𝑦(𝑡))
𝑓 0(𝑦(𝑡))

= 𝐿

𝐻

1 − 𝜌0
𝜌0

. (10)

Next, consider the follower’s expected payoff. As before, let  (𝑦, 𝑡) = 𝑒−𝑟𝑡(𝑦, 𝑡). By Lemma 2 and Lemma 3, (𝑦, 𝑡) can be written 
as

(𝑦, 𝑡) = 𝑞𝐹 (𝑦)
1 − 𝐹 1(𝑥(𝑡))
1 − 𝐹 1(𝑥(0))

(𝐻 − 𝑐) − (1 − 𝑞𝐹 (𝑦))
1 − 𝐹 0(𝑥(𝑡))
1 − 𝐹 0(𝑥(0))

(𝐿+ 𝑐) (11)
157

with
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𝑞𝐹 (𝑦) =
𝜌0𝑓

1(𝑦)(1 − 𝐹 1(𝑥(0)))
𝜌0𝑓

1(𝑦)(1 − 𝐹 1(𝑥(0))) + (1 − 𝜌0)𝑓 0(𝑦)(1 − 𝐹 0(𝑥(0)))
. (12)

Fix 𝑡∗ ∈ (0, 𝑇 ). Let {𝑡𝑛}∞𝑛=1 be a decreasing sequence such that 𝑡𝑛 ≥ 𝑡∗ for all 𝑛 and 𝑡𝑛 → 𝑡∗ as 𝑛 →∞. Denote the type of follower who 
optimally stops at 𝑡∗ by 𝑦∗ = 𝑦(𝑡∗). By optimality,  (𝑦∗, 𝑡𝑛) ≤  (𝑦∗, 𝑡∗) for all 𝑡𝑛, which means (𝑦∗, 𝑡𝑛) ≤ 𝑒𝑟(𝑡𝑛−𝑡

∗)(𝑦∗, 𝑡∗). Because 𝑒−𝑟𝑡
is Lipschitz-continuous with Lipschitz constant 𝑟, so 𝑒𝑟(𝑡𝑛−𝑡∗) ≤ 𝑟𝑒𝑟𝑡𝑛 (𝑡𝑛 − 𝑡∗) + 1. Thus,

(𝑦∗, 𝑡𝑛) −(𝑦∗, 𝑡∗) ≤ 𝑟𝑒𝑟𝑡𝑛 (𝑡𝑛 − 𝑡∗)(𝑦∗, 𝑡∗). I now show (𝑦∗, 𝑡𝑛) −(𝑦∗, 𝑡∗) ≥ 0. Writing out (𝑦∗, 𝑡𝑛) −(𝑦∗, 𝑡∗) using the definition 
of  given by (11), (𝑦∗, 𝑡𝑛) − (𝑦∗, 𝑡∗) ≥ 0 if and only if

𝐹 1(𝑥(𝑡𝑛)) − 𝐹 1(𝑥(𝑡∗))
𝐹 0(𝑥(𝑡𝑛)) − 𝐹 0(𝑥(𝑡∗))

𝑓 1(𝑦∗)
𝑓 0(𝑦∗)

≤ 𝐿+ 𝑐

𝐻 − 𝑐

1 − 𝜌0
𝜌0

.

Take the limit of the left-hand side as 𝑡𝑛 → 𝑡∗,

lim
𝑡𝑛→𝑡∗

𝐹 1(𝑥(𝑡𝑛)) − 𝐹 1(𝑥(𝑡∗))
𝐹 0(𝑥(𝑡𝑛)) − 𝐹 0(𝑥(𝑡∗))

𝑓 1(𝑦∗)
𝑓 0(𝑦∗)

= 𝑓 1(𝑥(𝑡∗))
𝑓 0(𝑥(𝑡∗))

𝑓 1(𝑦∗)
𝑓 0(𝑦∗)

= 𝐿

𝐻

1 − 𝜌0
𝜌0

<
𝐿+ 𝑐

𝐻 − 𝑐

1 − 𝜌0
𝜌0

,

where the first equality follows from 𝑥(𝑡) continuous and the second equality is (10). Thus, there exists 𝑁 such that for all 𝑛 ≥𝑁 , 
(𝑦∗, 𝑡𝑛) − (𝑦∗, 𝑡∗) ≥ 0. Therefore,

0 ≤ (𝑦∗, 𝑡𝑛) − (𝑦∗, 𝑡∗) ≤ 𝑟𝑒𝑟𝑡𝑛 (𝑡𝑛 − 𝑡∗)(𝑦∗, 𝑡∗).
Because 𝑟𝑒𝑟𝑡𝑛(𝑦∗, 𝑡∗) is finite, (𝑦∗, 𝑡) is locally Lipschitz-continuous and thus differentiable almost everywhere in a neighborhood 

around 𝑡∗. Because the 𝐹𝜃 ’s are (twice) continuously differentiable, for a fixed 𝑦, (𝑦, 𝑡) is a continuously differentiable function of 
𝑥(𝑡), which implies 𝑥(𝑡) is differentiable almost everywhere in a neighborhood around 𝑡∗. The same argument holds for every 
𝑡∗ ∈ (0, 𝑇 ), so 𝑥(𝑡) is differentiable almost everywhere in 𝑡 ∈ (0, 𝑇 ). By (10), 𝑦(𝑡) can be written as a continuously differentiable 
function of 𝑥(𝑡), so 𝑦(𝑡) is also differentiable almost everywhere.

Equilibrium conditions (5) and (6) follow from differentiating (𝑥, 𝑡) and  (𝑥, 𝑡) with respect to 𝑡, and setting the resulting 
derivative to zero whenever it exists, where

(𝑥, 𝑡) = 𝑞𝐿(𝑥)

𝑡

∫
0

−𝑒−𝑟𝜏𝑦′(𝜏) 𝑓
1(𝑦(𝜏))

𝐹 1(𝑦(0))
d𝜏𝐻 − (1 − 𝑞𝐿(𝑥))

𝑡

∫
0

−𝑒−𝑟𝜏𝑦′(𝜏) 𝑓
0(𝑦(𝜏))

𝐹 0(𝑦(0))
d𝜏𝐿

 (𝑦, 𝑡) = 𝑒−𝑟𝑡
(
𝑞𝐹 (𝑦)

1 − 𝐹 1(𝑥(𝑡))
1 − 𝐹 1(𝑥(0))

(𝐻 − 𝑐) − (1 − 𝑞𝐹 (𝑦))
1 − 𝐹 0(𝑥(𝑡))
1 − 𝐹 0(𝑥(0))

(𝐿+ 𝑐)
)

with 𝑞𝐹 (𝑦) given by (12) and 𝑞𝐿(𝑥) = Pr(𝜃 = 1|𝑥, 𝑦 ≤ 𝑦(0)) is given by

𝑞𝐿(𝑥) =
𝜌0𝑓

1(𝑥)𝐹 1(𝑦(0))
𝜌0𝑓

1(𝑥)𝐹 1(𝑦(0)) + (1 − 𝜌0)𝑓 0(𝑥)𝐹 0(𝑦(0))
.

By the (second) fundamental theorem of calculus, (6) can be written as

𝑥(𝑡) = 𝑥(0) +

𝑡

∫
0

𝑟

(
(𝐻 − 𝑐)𝐿
(𝐿+𝐻)𝑐

1 − 𝐹 1(𝑥(𝜏))
𝑓 1(𝑥(𝜏))

− (𝐿+ 𝑐)𝐻
(𝐿+𝐻)𝑐

1 − 𝐹 0(𝑥(𝜏))
𝑓 0(𝑥(𝜏))

)
𝑑𝜏.

By Lemma 2, 𝑥(𝑡) is continuous for all 𝑡 ∈ [0, 𝑇 ] and so is the integrand. By the (first) fundamental theorem of calculus, 𝑥(𝑡) is 
differentiable everywhere in 𝑡 ∈ (0, 𝑇 ). So 𝑦(𝑡) is also differentiable everywhere.

Optimality

Lemma 7. Fix 𝑥, (𝑥, 𝑡) is single-peaked in 𝑡. Fix 𝑦,  (𝑦, 𝑡) is single-peaked in 𝑡.

Proof. Let the subscript 𝑖 of a function denote the derivative with respect to the function’s 𝑖-th argument. The derivative of (𝑥, 𝑡)
with respect to 𝑡 is

2(𝑥, 𝑡) = −𝑦′(𝑡)𝑒−𝑟𝑡
(
𝑞𝐿(𝑥)

𝑓 1(𝑦(𝑡))
𝐹 1(𝑦(0))

𝐻 − (1 − 𝑞𝐿(𝑥))
𝑓 0(𝑦(𝑡))
𝐹 0(𝑦(0))

𝐿

)
.

By strict MLRP and 𝑦(𝑡) strictly decreasing, there exists a unique 𝑡∗ such that 2(𝑥, 𝑡∗) = 0, 2(𝑥, 𝑡) > 0 for 𝑡 < 𝑡∗, and 2(𝑥, 𝑡) < 0 for 
𝑡 > 𝑡∗.

For the follower, the first-order condition implies 2(𝑦(𝑡), 𝑡) = 𝑟(𝑦(𝑡), 𝑡). Because strategies are everywhere differentiable, at each 
𝑡, there is one and only one type whose first-order condition is satisfied. Denote the type whose first-order condition is satisfied at 𝑡∗
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by 𝑦∗, that is, 2(𝑦∗, 𝑡∗) = 𝑟(𝑦∗, 𝑡∗). Suppose 𝑦∗ mimics type 𝑦̂ by stopping at 𝑡. By the (second) fundamental theorem of calculus,
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2(𝑦∗, 𝑡) = 2(𝑦̂, 𝑡) +
𝑦∗

∫̂
𝑦

21(𝑦, 𝑡)d𝑦 = 𝑟(𝑦̂, 𝑡) +
𝑦∗

∫̂
𝑦

21(𝑦, 𝑡)d𝑦,

where 21(𝑦, ̂𝑡) = d2(𝑦, ̂𝑡)∕d𝑦. The second equality follows from 𝑦̂’s first-order condition 2(𝑦̂, ̂𝑡) = 𝑟(𝑦̂, ̂𝑡). By MLRP, 21(𝑦, ̂𝑡) < 0. 
Thus, if 𝑦̂ < 𝑦∗,

2(𝑦∗, 𝑡) = 𝑟(𝑦̂, 𝑡) +
𝑦∗

∫̂
𝑦

21(𝑦, 𝑡)d𝑦 < 𝑟(𝑦̂, 𝑡) < 𝑟(𝑦∗, 𝑡),

where the first inequality follows from ∫ 𝑦∗

𝑦̂
21(𝑦, ̂𝑡)d𝑦 < 0 and the second inequality follows from MLRP. Similarly, if 𝑦̂ > 𝑦∗, then 

2(𝑦∗, ̂𝑡) > 𝑟(𝑦∗, ̂𝑡). Because 𝑦(𝑡) is decreasing, 𝑦̂ < (>)𝑦∗ if and only if 𝑡 > (<)𝑡∗. The result follows. □

A.1.8. Proof of Lemma 4

Define the right-hand side of (6) as 𝜙(⋅) and rewrite (6) as 𝑥′(𝑡) = 𝜙(𝑥(𝑡)). Let 𝑥̄ ∶= min{𝑥 ∶ 𝜙(𝑥) = 0}. Because the support of 
𝑓 1 and 𝑓 0 is [0, 1] which is bounded, as 𝑥 → 1, (1 − 𝐹 1(𝑥))∕𝑓 1(𝑥) → 0 and (1 − 𝐹 0(𝑥))∕𝑓 0(𝑥) → 0, so 𝜙(𝑥) → 0. Thus, 𝑥̄ ≤ 1. The 
differential equation 𝑥′(𝑡) = 𝜙(𝑥(𝑡)) is autonomous and 𝜙(𝑥) is continuous for all 𝑥 ∈ (0, 1). Given an initial value 𝑥∗(0), the solution 
to 𝑥′(𝑡) = 𝜙(𝑥(𝑡)), denoted by 𝑥∗(𝑡), is either constant or monotone. So if 𝜙(𝑥∗(0)) > 0, then 𝜙(𝑥∗(𝑡)) > 0 for all 𝑡 and 𝜙(𝑥∗(𝑡)) → 0 as 
𝑥∗(𝑡) → 𝑥̄ (Teschl, 2012, Lemma 1.1). This implies 𝑥∗(𝑡) < 𝑥̄ ≤ 1 for all 𝑡. Let 𝑥(𝑡) denote the equilibrium (inverse) strategy. If 𝑥(𝑡)
is a solution to 𝑥′(𝑡) = 𝜙(𝑥(𝑡)) for all 𝑡, then 𝑥(𝑡) < 𝑥̄ ≤ 1 for all 𝑡. Therefore, if there exists 𝑇 <∞ such that 𝑥(𝑇 ) = 1, 𝑥(𝑡) must be 
discontinuous at 𝑇 . This contradicts Lemma 2.

A.1.9. Proof of Proposition 1

Equilibrium conditions

Equation (4) is given by evaluating equation (5) at 𝑡 = 0. I first derive condition (2).

Recall that by definition, 𝑦(0) ≤ 𝑧 ≤ 𝑥(0). I first show 𝑦(0) < 𝑧 if and only if 𝑥(0) = 𝑧.

Suppose 𝑦(0) < 𝑧. Suppose 𝑦(0) waits a small amount of time d𝑡 before investing. If the leader stays invested in [0, d𝑡), 𝑦(0) invests 
at d𝑡 and gets limd𝑡→0  (𝑦(0), d𝑡) =  (𝑦(0), 0). If the leader disinvests in [0, d𝑡), 𝑦(0) never invests and gets 0. 𝑦(0)’s expected payoff 
from waiting d𝑡 before investing is

Pr(𝑠𝐿 ≥ 𝑥(0)|𝑦(0), 𝑠𝐿 > 𝑧) (𝑦(0),0) + Pr(𝑠𝐿 ∈ (𝑧,𝑥(0))|𝑦(0), 𝑠𝐿 > 𝑧)(0). (13)

Suppose 𝑦(0) invests. If the leader stays invested, 𝑦(0) gets Pr(𝜃 = 1|𝑦(0), 𝑠𝐿 ≥ 𝑥(0))𝐻 −Pr(𝜃 = 0|𝑦(0), 𝑠𝐿 ≥ 𝑥(0))𝐿 − 𝑐, which is equal 
to  (𝑦(0), 0). If the leader disinvests, 𝑦(0) gets −𝑐. So his expected payoff from investing is

Pr(𝑠𝐿 ≥ 𝑥(0)|𝑦(0), 𝑠𝐿 > 𝑧) (𝑦(0),0) + Pr(𝑠𝐿 ∈ (𝑧,𝑥(0))|𝑦(0), 𝑠𝐿 > 𝑧)(−𝑐). (14)

Because 𝑦(0) invests at 𝑡 = 0, so by optimality, it must be that (13)≥(14). Moreover, (13) is (14) plus a non-negative term, so this 
can only hold if they are equal. Because the first term in (13) and the first term in (14) are the same, the second term must be zero, 
which is achieved if and only if 𝑥(0) = 𝑧.

Next, I show there does not exist a dynamic equilibrium with 𝑥(0) > 𝑧. Suppose 𝑥(0) > 𝑧. From the previous argument, 𝑦(0) = 𝑧. 
Consider 𝑧’s incentive in the initial stage. Suppose 𝑧 invests in the initial stage. If the other player invests, payoff realizes. If the other 
player does not invest, 𝑧 disinvests immediately (because 𝑥(0) > 𝑧). 𝑧’s expected payoff from investing in the initial stage is

Pr(𝜃 = 1, 𝑠−𝑖 > 𝑧|𝑧)𝐻 − Pr(𝜃 = 0, 𝑠−𝑖 > 𝑧|𝑧)𝐿− 𝑐. (15)

Suppose 𝑧 does not invest in the initial stage. If the other player does not invest, by optimality, 𝑧 gets at least 0. If the other player 
invests, 𝑧 invests at d𝑡 (because 𝑦(0) = 𝑧). 𝑧’s expected payoff from not investing in the initial stage is at least

Pr(𝜃 = 1, 𝑠−𝑖 > 𝑥(0)|𝑧)(𝐻 − 𝑐) − Pr(𝜃 = 0, 𝑠−𝑖 > 𝑥(0)|𝑧)(𝐿+ 𝑐). (16)

Players’ incentives in the leader-follower continuation game do not change. For 𝑥(0) > 𝑧 = 𝑦(0), (5) becomes 𝜌0𝑓 1(𝑥(0))𝑓 1(𝑧)𝐻 =
(1 − 𝜌0)𝑓 0(𝑥(0))𝑓 0(𝑧)𝐿. Together with MLRP, (16)>(15). This is a contradiction as 𝑧 is not indifferent in the initial stage.

Equation (3) is given by type 𝑧’s indifference between investing and not investing in the initial stage given the continuation 
strategies.

Suppose 𝑧 invests in the initial stage. If the other player invests, payoff realizes. If the other player does not invest, the game moves 
to the leader-follower continuation game where 𝑧 is the leader. 𝑧 stays invested at the beginning of the leader-follower continuation 
game at which if the follower follows suit, payoff realizes, otherwise 𝑧 disinvests at d𝑡 and gets limd𝑡→0(𝑧, d𝑡) = 0.25 𝑧’s expected 
payoff from investing is

25 Technically, “disinvesting at d𝑡” is not a well-defined best response. This does not compromise the analysis as it arises only on a zero-measure set. The threshold 
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𝑧 is well-defined as it is shown below that all types above 𝑧 strictly prefer investing and all types below strictly prefer not investing.
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Pr(𝑠−𝑖 > 𝑧|𝑧) [Pr(𝜃 = 1|𝑧, 𝑠−𝑖 > 𝑧)𝐻 − Pr(𝜃 = 0|𝑧, 𝑠−𝑖 > 𝑧)𝐿− 𝑐
]

(17)

+Pr(𝑠−𝑖 ≤ 𝑧|𝑧)(Pr(𝑠−𝑖 ∈ [𝑦(0), 𝑧]|𝑧, 𝑠−𝑖 ≤ 𝑧)

⋅
[
Pr(𝜃 = 1|𝑧, 𝑠−𝑖 ∈ [𝑦(0), 𝑧])𝐻 − Pr(𝜃 = 0|𝑧, 𝑠−𝑖 ∈ [𝑦(0), 𝑧])𝐿

]
− 𝑐

)
.

Suppose 𝑧 does not invest in the initial stage. If the other player does not invest, the game moves to a continuation game in which 
neither player has invested. Call this a no-investment continuation game. Denote 𝑧’s payoff in the no-investment continuation game by 
𝑈 (𝑧). By optimality, 𝑈 (𝑧) ≥ 0. If the other player invests, the game moves to the leader-follower continuation game where 𝑧 is the 
follower. At the beginning of the leader-follower continuation game, by (2), 𝑧 invests and the leader stays invested with probability 
1. 𝑧’s expected payoff from not investing is

Pr(𝑠−𝑖 > 𝑧|𝑧) [Pr(𝜃 = 1|𝑧, 𝑠−𝑖 > 𝑧)𝐻 − Pr(𝜃 = 0|𝑧, 𝑠−𝑖 > 𝑧)𝐿− 𝑐
]

+Pr(𝑠−𝑖 ≤ 𝑧|𝑧)𝑈 (𝑧). (18)

I now show that players never invest after no initial investments. So 𝑈 (𝑧) = 0.

Lemma 8. In any monotonic symmetric dynamic equilibrium, 𝜎𝑖(𝑠𝑖, ∅) ∈ {0, ∞}.

Proof. If there exists an equilibrium where players invest in the no-investment continuation game, 𝑧, being the highest type, must 
find it optimal to invest. The best 𝑧 can do in this continuation game is to signal he is the highest type. Suppose he can do that. Given 
𝑖’s type is equal to 𝑧, by strict MLRP, there exists a unique 𝑦 that is indifferent between investing and not investing, types in (𝑦, 𝑧)
invest, and types below 𝑦 never invest. Let 𝑈 (𝑧) denote 𝑧’s expected payoff in this best case scenario,

𝑈 (𝑧) = Pr(𝜃 = 1, 𝑠−𝑖 ∈ [𝑦, 𝑧]|𝑧, 𝑠−𝑖 ≤ 𝑧)𝐻 − Pr(𝜃 = 0, 𝑠−𝑖 ∈ [𝑦, 𝑧]|𝑧, 𝑠−𝑖 ≤ 𝑧)𝐿− 𝑐.

𝑦’s indifference condition is Pr(𝜃 = 1|𝑦, 𝑧)𝐻 − Pr(𝜃 = 0|𝑦, 𝑧)𝐿 = 𝑐. By (2) and (5), Pr(𝜃 = 1|𝑦(0), 𝑧)𝐻 − Pr(𝜃 = 0|𝑦(0), 𝑧)𝐿 = 0. So 
𝑦(0) < 𝑦 by MLRP. By Lemma 5,

Pr(𝜃 = 1, 𝑠−𝑖 ∈ [𝑦(0), 𝑧]|𝑧, 𝑠−𝑖 ≤ 𝑧)𝐻 − Pr(𝜃 = 0, 𝑠−𝑖 ∈ [𝑦(0), 𝑧]|𝑧, 𝑠−𝑖 ≤ 𝑧)𝐿− 𝑐

>Pr(𝜃 = 1, 𝑠−𝑖 ∈ [𝑦, 𝑧]|𝑧, 𝑠−𝑖 ≤ 𝑧)𝐻 − Pr(𝜃 = 0, 𝑠−𝑖 ∈ [𝑦, 𝑧]|𝑧, 𝑠−𝑖 ≤ 𝑧)𝐿− 𝑐 =𝑈 (𝑧).

This means 𝑧’s expected payoff from investing in the initial stage is strictly higher than not investing. This is a contradiction as 𝑧
cannot be made indifferent in the initial stage. □

In equilibrium, (18)=(17). With 𝑈 (𝑧) = 0, this reduces to

𝑐 =Pr(𝑠−𝑖 ∈ [𝑦(0), 𝑧]|𝑠𝑖 = 𝑧, 𝑠−𝑖 ≤ 𝑧)

⋅
[
Pr(𝜃 = 1|𝑠𝑖 = 𝑧, 𝑠−𝑖 ∈ [𝑦(0), 𝑧])𝐻 − Pr(𝜃 = 0|𝑠𝑖 = 𝑧, 𝑠−𝑖 ∈ [𝑦(0), 𝑧])𝐿

]
. (19)

(3) follows from writing out these probability terms. By the law of total probability,

Pr(𝑠−𝑖 ∈ [𝑦(0), 𝑧]|𝑠𝑖 = 𝑧, 𝑠−𝑖 ≤ 𝑧)

=Pr(𝑠−𝑖 ∈ [𝑦(0), 𝑧]|𝑠𝑖 = 𝑧, 𝑠−𝑖 ≤ 𝑧, 𝜃 = 1)Pr(𝜃 = 1|𝑠𝑖 = 𝑧, 𝑠−𝑖 ≤ 𝑧)

+ Pr(𝑠−𝑖 ∈ [𝑦(0), 𝑧]|𝑠𝑖 = 𝑧, 𝑠−𝑖 ≤ 𝑧, 𝜃 = 0)Pr(𝜃 = 0|𝑠𝑖 = 𝑧, 𝑠−𝑖 ≤ 𝑧).

Because signals are conditionally independent, for 𝜃 = 0, 1,

Pr(𝑠−𝑖 ∈ [𝑦(0), 𝑧]|𝑠𝑖 = 𝑧, 𝑠−𝑖 ≤ 𝑧, 𝜃) =1 − 𝐹𝜃(𝑦(0))∕𝐹𝜃(𝑧),

𝑞(𝑧) ∶= Pr(𝜃 = 1|𝑠𝑖 = 𝑧, 𝑠−𝑖 ≤ 𝑧) =
𝜌0𝑓

1(𝑧)𝐹 1(𝑧)
𝜌0𝑓

1(𝑧)𝐹 1(𝑧) + (1 − 𝜌0)𝑓 0(𝑧)𝐹 1(𝑧)
,

Pr(𝜃 = 1|𝑠𝑖 = 𝑧, 𝑠−𝑖 ∈ [𝑦(0), 𝑧]) =
𝜌0𝑓

1(𝑧)(𝐹 1(𝑧) − 𝐹 1(𝑦(0)))(
𝜌0𝑓

1(𝑧)(𝐹 1(𝑧) − 𝐹 1(𝑦(0)))
+(1 − 𝜌0)𝑓 0(𝑧)(𝐹 0(𝑧) − 𝐹 0(𝑦(0)))

) .

Optimality

In the initial stage of time 0, by (19) and Lemma 5, 𝑧’s expected payoff from investing is strictly positive. I verify that types 
above 𝑧 strictly prefer investing at time 0. The argument for types below 𝑧 is analogous and thus omitted. Fix a type 𝑥 > 𝑧. The only 
difference between 𝑥’s and 𝑧’s strategies is 𝑥 disinvests at 𝜎𝐿(𝑥) > 0 in the leader-follower continuation game. The difference in 𝑥’s 
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Pr(𝑠−𝑖 ≤ 𝑧|𝑥)(Pr(𝑠−𝑖 ∈ [𝑦(0), 𝑧]|𝑥, 𝑠−𝑖 ≤ 𝑧)

⋅
[
Pr(𝜃 = 1|𝑥, 𝑠−𝑖 ∈ [𝑦(0), 𝑧])𝐻 − Pr(𝜃 = 0|𝑥, 𝑠−𝑖 ∈ [𝑦(0), 𝑧])𝐿

]
− 𝑐

+ Pr(𝑠−𝑖 < 𝑦(0)|𝑥, 𝑠−𝑖 ≤ 𝑧)(𝑥,𝜎𝐿(𝑥))).
To show this is positive, first, by optimality and Lemma 7, for all 𝑥 > 𝑧, the last line (𝑥, 𝜎𝐿(𝑥)) > limd𝑡→0(𝑥, d𝑡) = 0. It then suffices 
to establish the first two lines is positive, which follows from 𝑧’s indifference condition (19) and MLRP.

A.1.10. Proof of Theorem 1

Lemma 9. There exists a unique solution (𝑧, 𝑥(0), 𝑦(0)) to the system of equations (2), (3), and (4).

Proof. From (4), one can write 𝑦(0) as a function of 𝑧, denoted by 𝑦0(𝑧). 𝑦0(𝑧) is decreasing in 𝑧 by MLRP. The initial condition (19)

can be written as (𝑧) = 𝑐 where

(𝑧) ∶= 𝑞(𝑧)
(
1 −

𝐹 1(𝑦0(𝑧))
𝐹 1(𝑧)

)
𝐻 − (1 − 𝑞(𝑧))

(
1 −

𝐹 0(𝑦0(𝑧))
𝐹 0(𝑧)

)
𝐿.

(𝑧) is continuous in 𝑧. As 𝑧 → 𝑦(0), (𝑧) → 0 < 𝑐. As 𝑧 → 1, because the likelihood ratio is unbounded, 𝑦0(𝑧) → 0 and 𝑞(𝑧) → 1. So 
lim𝑧→1 (𝑧) =𝐻 > 𝑐. By strict MLRP and IFRP, (𝑧) is strictly increasing in 𝑧. The result follows. □

Therefore, (𝑧, 𝑥(0), 𝑦(0)) is unique. Because the 𝑓𝜃 ’s are continuously differentiable, by the Picard–Lindelöf theorem, given 
(𝑥(0), 𝑦(0)), there exists a unique solution (𝑥(𝑡), 𝑦(𝑡)) to the differential system (5) and (6). This solution is an equilibrium if and 
only if 𝑥(𝑡) is strictly increasing and 𝑦(𝑡) is strictly decreasing. Equation (5) and MLRP imply it suffices to establish conditions under 
which 𝑥(𝑡) is strictly increasing.

Claim 2. Let 𝑥(𝑡) be the solution to the differential equation (6) with initial value 𝑥(0). 𝑥(𝑡) is strictly increasing for 𝑡 ≥ 0 if and only if

ℎ(𝑥(0)) < (𝐻 − 𝑐)𝐿
(𝐿+ 𝑐)𝐻

. (20)

Proof. Because 𝑥′(𝑡) = 𝜙(𝑥(𝑡)) is a first-order autonomous differential equation where 𝜙(⋅) is continuous, the solution 𝑥(𝑡) to this 
differential equation with initial value 𝑥(0) is either constant or monotone. 𝑥(𝑡) is strictly increasing if and only if 𝜙(𝑥(0)) > 0 (Teschl, 
2012, Lemma 1.1), which reduces to (20).26 □

Claim 3. There exists a unique 𝑐 ∈ (0, 𝐻) such that

ℎ(−1(𝑐)) = (𝐻 − 𝑐)𝐿
(𝐿+ 𝑐)𝐻

. (21)

Proof. The right-hand side of (21) is continuous and strictly decreasing in 𝑐. For all 𝑐 ∈ (0, 𝐻), (𝐻 − 𝑐)𝐿∕((𝐿 + 𝑐)𝐻) takes values in 
(0, 1) and converges to 1 as 𝑐→ 0 and to 0 as 𝑐→𝐻 . For the left-hand side of (21), from the proof of Lemma 9, for all 𝑧 > 𝑧, where 
𝑧 solves 𝜌0𝑓 1(𝑧)𝑓 1(𝑧)𝐻 − (1 − 𝜌0)𝑓 0(𝑧)𝑓 0(𝑧)𝐿 = 0, (𝑧) is increasing in 𝑧. This implies −1(𝑐) is increasing in 𝑐 with −1(𝑐) → 𝑧 as 
𝑐 → 0 and −1(𝑐) → 1 as 𝑐 →𝐻 . By IHRP, ℎ(−1(𝑐)) is strictly increasing in 𝑐, and by MLRP, ℎ(−1(𝑐)) converges to some constant 
ℎ ≥ 0 as 𝑐→ 0 and converges to ℎ̄ ≤ 1 as 𝑐→𝐻 . The result then follows from the intermediate value theorem. □

It follows from the proof of Claim 3 that 𝑐 < 𝑐 if and only if ℎ(−1(𝑐)) < (𝐻 − 𝑐)𝐿∕((𝐿 + 𝑐)𝐻) where by definition 𝑥(0) = −1(𝑐). 
The result follows.

A.1.11. Proof of Proposition 3

By definition 𝜌(𝑡) ∶=Pr(𝜃 = 1|𝑠𝐿 ≥ 𝑥(𝑡), 𝑠𝐹 < 𝑦(𝑡)), which can be written as

𝜌(𝑡) = 1
/(

1 +
1 − 𝜌0
𝜌0

𝐹 0(𝑦(𝑡))
𝐹 1(𝑦(𝑡))

1 − 𝐹 0(𝑥(𝑡))
1 − 𝐹 1(𝑥(𝑡))

)
.

For all 𝑡 ≥ 0, 𝑥(𝑡), 𝑦(𝑡) ∈ (0, 1) which implies 𝜌(𝑡) ∈ (0, 1).
Equation (5) implies as 𝑡 →∞, either both 𝑥(𝑡) and 𝑦(𝑡) converge to interior values, or both to the extreme values 1 and 0. In 

other words, it cannot be that 𝑥(𝑡) converges to interior values while at the same time 𝑦(𝑡) converges to 0, or vice versa. To determine 
when they converge to interior values and when to extreme values, recall that 𝑥(𝑡) solves the autonomous differential equation (6). 
So if there exists 𝑥̄ < 1 such that ℎ(𝑥̄) = 𝐿(𝐻 − 𝑐)∕(𝐻(𝐿 + 𝑐)), 𝑥(𝑡) → 𝑥̄ < 1 and 𝑦(𝑡) → 𝑦 > 0 where 𝑥̄ and 𝑦 satisfy (5). Otherwise 
𝑥(𝑡) → 1 and 𝑦(𝑡) → 0 (Teschl, 2012, Lemma 1.1).
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26 It is worth noting that condition (20) coincides with the condition that 𝑦(0), the lowest type who invests at 𝑡 = 0, gets positive payoff from investing at 𝑡 = 0.
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I now analyze the limit of 𝜌(𝑡). Note that

lim
𝑡→∞

1 − 𝜌0
𝜌0

𝐹 0(𝑦(𝑡))
𝐹 1(𝑦(𝑡))

1 − 𝐹 0(𝑥(𝑡))
1 − 𝐹 1(𝑥(𝑡))

= lim
𝑡→∞

1 − 𝜌0
𝜌0

⋅
𝑓 0(𝑥(𝑡))
𝑓 1(𝑥(𝑡))

⋅
𝑓 0(𝑦(𝑡))
𝑓 1(𝑦(𝑡))

⋅
𝐹 0(𝑦(𝑡))
𝐹 1(𝑦(𝑡))

⋅
𝑓 1(𝑦(𝑡))
𝑓 0(𝑦(𝑡))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑘(𝑦(𝑡))

⋅
1 − 𝐹 0(𝑥(𝑡))
1 − 𝐹 1(𝑥(𝑡))

⋅
𝑓 1(𝑥(𝑡))
𝑓 0(𝑥(𝑡))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=ℎ(𝑥(𝑡))

, (22)

where 𝑘(⋅) is the failure ratio and ℎ(⋅) is the hazard ratio.

It is obvious that in the interior value case, lim𝑡→∞ 𝑘(𝑦(𝑡))ℎ(𝑥(𝑡)) = 𝑘(𝑦)ℎ(𝑥̄) is positive and finite. For the extreme value case, by 
IFRP and IHRP,27 𝑘(⋅) and ℎ(⋅) are both strictly increasing. By MLRP, 𝑘(⋅) > 1 and ℎ(⋅) < 1. By the monotone convergence theorem, 
lim𝑠→0 𝑘(𝑠) <∞ and lim𝑠→1 ℎ(𝑠) > 0. Thus, lim𝑡→∞ 𝑘(𝑦(𝑡))ℎ(𝑥(𝑡)) is positive and finite. So (22) is equal to (𝐻∕𝐿) lim𝑡→∞ 𝑘(𝑦(𝑡))ℎ(𝑥(𝑡)), 
where 𝐻∕𝐿, by (5), is the limit of the first term in (22). Therefore,

lim
𝑡→∞

𝜌(𝑡) = 𝜌∗ ∶= 1
/(

1 + (𝐻∕𝐿) lim
𝑡→∞

𝑘(𝑦(𝑡))ℎ(𝑥(𝑡))
)
∈ (0,1).

A.1.12. Proof of Proposition 4

First, by definition, 𝜋𝐼 (𝑡) and 𝜋𝑁𝐼 (𝑡) are equal to

𝜋𝐼 (𝑡) =(1 − 𝐹 1(𝑥(0)))2 + 2(1 − 𝐹 1(𝑥(0)))(𝐹 1(𝑥(0)) − 𝐹 1(𝑦(0)))

+ 2

𝑡

∫
0

(1 − 𝐹 1(𝑥(𝜏)))𝑓 1(𝑦(𝜏))(−𝑦′(𝜏))d𝜏,

𝜋𝑁𝐼 (𝑡) =𝐹 0(𝑥(0))2 + 2

𝑡

∫
0

𝐹 0(𝑦(𝜏))𝑓 0(𝑥(𝜏))𝑥′(𝜏)d𝜏.

I prove the result for 𝜋𝐼 (𝑡). The proof for 𝜋𝑁𝐼 (𝑡) is analogous. Take the derivative of 𝜋𝐼 (𝑡) with respect to 𝑡, 𝜋′
𝐼
(𝑡) = 2(1 −

𝐹 1(𝑥(𝑡)))𝑓 1(𝑦(𝑡))(−𝑦′(𝑡)) > 0, where the inequality follows from 𝑦′(𝑡) < 0 for all 𝑡. To show 𝜋𝐼 (𝑡) is bounded, note that

𝜋𝐼 (𝑡) <𝜋𝐼 (𝑡) + 2

𝑡

∫
0

𝐹 1(𝑦(𝜏))𝑓 1(𝑥(𝜏))𝑥′(𝜏)d𝜏

= 1 − 𝐹 1(𝑥(0))2 − 2(1 − 𝐹 1(𝑥(𝑡)))𝐹 1(𝑦(𝑡)),

where the inequality follows from 𝑥′(⋅) > 0, and the equality is derived with some algebra and integration by parts. Take the limit of 
both sides as 𝑡 →∞,

lim
𝑡→∞

𝜋𝐼 (𝑡) ≤ 1 − 𝐹 1(𝑥(0))2 − 2 lim
𝑡→∞

(
1 − 𝐹 1(𝑥(𝑡))

)
𝐹 1(𝑦(𝑡)) < 1.

The right-hand side is less than 1 because lim𝑡→∞
(
1 − 𝐹 1(𝑥(𝑡))

)
𝐹 1(𝑦(𝑡)) ≥ 0, and because 𝑥(0) < 1, 𝐹 1(𝑥(0)) > 0.

A.2. Proofs for Section 4

A.2.1. Preliminaries

I first derive some useful implications of the precision definition and the ULR order. I derive these results in the symmetric 
environment, but they can be generalized to general environments. The proofs of these results are relegated to the Online Appendix.

Lemma 10. Suppose 𝐅̂ is more precise than 𝐅. For all 𝜇 ∈ (0, 1), the hazard ratio of 𝐅 is higher than the hazard ratio of 𝐅̂: ℎ(𝜇) > ℎ̂(𝜇). In 
the symmetric environment, equivalently, the failure ratio of 𝐅 is lower than the failure ratio of 𝐅̂: 𝑘(𝜇) < 𝑘̂(𝜇).

Lemma 11. Suppose 𝐅̂ is more precise than 𝐅. ℎ0(𝜇) > ℎ̂0(𝜇) and 𝐹 1(𝜇) > 𝐹 1(𝜇) for 𝜇 ≥ 1∕2.

Lemma 12. Suppose 𝐹 ≻ULR 𝐹 , for any 𝜆 ∈ (0, 1), 𝐹 ≻ULR ((1 − 𝜆)𝐹 + 𝜆𝐹 ) ≻ULR 𝐹 .

Let 𝐅0 = (𝐹 0
0 , 𝐹

1
0 ) denote the uninformative distribution and 𝐅∞ = (𝐹 0

∞, 𝐹
1
∞) denote the perfectly informative distribution. 𝐅0 and 

𝐅∞ are defined as follows.
162

27 Recall from Section 3.2.3 that IFRP and IHRP provide sufficient conditions for existence and uniqueness of the equilibrium in question.
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𝐹 0
0 (𝜇) = 𝐹 1

0 (𝜇) =

{
0 𝜇 < 1∕2
1 𝜇 ≥ 1∕2

; 𝐹 0
∞(𝜇) = 1∀𝜇 ≥ 0 and 𝐹 1

∞(𝜇) = 𝟏{1}(𝜇). (23)

In the symmetric environment, for any precision, (7) says 𝑓 1(𝜇)∕𝑓 0(𝜇) = 𝜇∕(1 − 𝜇) and (5) reduces to 𝑥(𝑡) = 1 − 𝑦(𝑡) for all 𝑡 ≥ 0. 
Because 𝑥(0) ≥ 𝑦(0), 𝑥(0) ≥ 1∕2. Therefore, in the following proofs, it suffices to analyze 𝑥(𝑡) with 𝑥(0) ≥ 1∕2.

A.2.2. Proof of Proposition 5

Let the subscript 𝛾 denote the precision of the distribution. Section 4.2 explains this notation in more details.

Initial value Denote the initial value by 𝑥𝛾 (0) for distribution 𝐅𝛾 . To show the initial value is increasing in precision, rewrite the 
initial condition (3) with the precision index 𝛾 , 𝛾 (𝑥𝛾 (0)) = 𝑐. In the symmetric environment,

𝛾 (𝜇) =
𝑓 1
𝛾 (𝜇)𝐹

1
𝛾 (𝜇)

𝑓 1
𝛾 (𝜇)𝐹 1

𝛾 (𝜇) + 𝑓 0
𝛾 (𝜇)𝐹 0

𝛾 (𝜇)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝑞𝛾 (𝜇)

(
1 −

1 − 𝐹 0
𝛾 (𝜇)

𝐹 1
𝛾 (𝜇)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶1−𝑅𝛾 (𝜇)

(
1 − 1 − 𝜇

𝜇

)
. (24)

From the proof of Lemma 9, 𝛾 (𝜇) is increasing in 𝜇 for 𝜇 ≥ 1∕2 for a fixed 𝛾 . So showing 𝑥𝛾 (0) is increasing in 𝛾 is equivalent to 
showing 𝛾 (𝜇) is decreasing in 𝛾 for a fixed 𝜇. By Lemma 10, 𝑞𝛾 (𝜇) is decreasing in 𝛾 . I show 𝑅𝛾 (𝜇) is increasing in 𝛾 .

Fix two pairs of posterior belief distributions 𝐅𝛾1 and 𝐅𝛾2 with 𝛾1 < 𝛾2. Let 𝑄0(𝜇) = (1 − 𝐹 0
𝛾1
(𝜇))∕(1 − 𝐹 0

𝛾2
(𝜇)) and 𝑃 1(𝜇) =

𝐹 1
𝛾1
(𝜇)∕𝐹 1

𝛾2
(𝜇). Showing 𝑅𝛾2

(𝜇) >𝑅𝛾1
(𝜇) for 𝜇 ≥ 1∕2 is equivalent to showing 𝑄0(𝜇) < 𝑃 1(𝜇) for 𝜇 ≥ 1∕2.

By (7), 𝑓 1(𝜇)∕𝑓 1(𝜇) = 𝑓 0(𝜇)∕𝑓 0(𝜇) and are both unimodal and symmetric around 1∕2. Then 𝑃 1(𝜇) is unimodal with a maximum 
at 𝜇̂1

𝑃
≥ 1∕2 and 𝑄0(𝜇) is unimodal with a maximum at 𝜇̂0

𝑄
≤ 1∕2 (Hopkins and Kornienko, 2007, Proposition 2). In the symmetric 

environment, 𝑄0(𝜇) = 𝑃 1(1 − 𝜇) for all 𝜇. In particular, 𝑄0(1∕2) = 𝑃 1(1∕2). So for all 𝜇 ∈ [1∕2, 𝜇̂1
𝑃
), 𝑄0(𝜇) is decreasing and 𝑃 1(𝜇)

is increasing, so 𝑄0(𝜇) < 𝑃 1(𝜇). For all 𝜇 ≥ 𝜇̂1
𝑃

, 𝑄0(𝜇) < 𝑓 0
𝛾1
(𝜇)∕𝑓 0

𝛾2
(𝜇) = 𝑓 1

𝛾1
(𝜇)∕𝑓 1

𝛾2
(𝜇) < 𝑃 1(𝜇) (Hopkins and Kornienko, 2007, 

Corollary 1).

Differential equation Rewrite (6) with the precision index 𝛾 , 𝑥′𝛾 (𝑡) = 𝜙𝛾 (𝑥𝛾 (𝑡)) =𝐾1∕ℎ1𝛾 (𝑥𝛾 (𝑡)) −𝐾
0∕ℎ0𝛾 (𝑥𝛾 (𝑡)), where 𝐾1 = 𝑟(1 − 𝑐)∕2𝑐

and 𝐾0 = 𝑟(1 + 𝑐)∕2𝑐. To show 𝑥′𝛾 (𝑡) is increasing pointwise in precision, first, by Lemma 11, ℎ0𝛾1 (𝜇) > ℎ0𝛾2
(𝜇). Then by Lemma 10, 

ℎ1𝛾1
(𝜇)∕ℎ1𝛾2 (𝜇) > ℎ0𝛾1

(𝜇)∕ℎ0𝛾2 (𝜇) > 1. 𝜙𝛾 (𝜇) > 0 implies 𝐾1∕ℎ1𝛾 (𝜇) >𝐾0∕ℎ0𝛾 (𝜇) for 𝛾 = 𝛾1, 𝛾2. Then

𝜙𝛾2 (𝜇) −𝜙𝛾1 (𝜇) =
𝐾1

ℎ1𝛾1
(𝜇)

(
ℎ1𝛾1

(𝜇)

ℎ1𝛾2
(𝜇)

− 1

)
− 𝐾0

ℎ0𝛾1
(𝜇)

(
ℎ0𝛾1

(𝜇)

ℎ0𝛾2
(𝜇)

− 1

)
> 0.

The result follows from a standard comparison argument (Teschl, 2012, Theorem 1.3).

A.2.3. Proof of Proposition 6

Existence Step 1. There exists a (unique) initial value 𝑥𝛾 (0) for all 𝛾 > 0.

From the proof of Lemma 9, 𝛾 (𝜇), defined in (24), is continuous and increasing in 𝜇 for 𝜇 ≥ 1∕2. 𝛾 (𝜇) → 0 as 𝜇 → 1∕2 and 
𝛾 (𝜇) → 1 as 𝜇→ 1. The uninformative (𝛾 = 0) and perfectly informative (𝛾 =∞) distributions are defined in (23).

Take 𝛾 → 0. For any 𝜇 ≥ 1∕2, 𝐹 1
𝛾 (𝜇)∕𝐹

0
𝛾 (𝜇) → 1, so 𝑞𝛾 (𝜇) → 𝜇. For any 𝜇 > 1∕2, (1 − 𝐹 0

𝛾 (𝜇))∕𝐹
1
𝛾 (𝜇) → 0 so 𝛾 (𝜇) → 2𝜇 − 1. At 

𝜇 = 1∕2, 𝛾 (𝜇) = 0. Therefore, for all 𝜇 ≥ 1∕2, 𝛾 (𝜇) → 2𝜇 − 1. Take 𝛾 → ∞. For all 𝜇 < 1, 𝐹 1
𝛾 (𝜇)∕𝐹

0
𝛾 (𝜇) → 0 so 𝑞𝛾 (𝜇) → 0 and 

𝛾 (𝜇) → 0. At 𝜇 = 1, 𝛾 (𝜇) = 1. So 𝛾 (𝜇) → 𝟏{1}(𝜇).
Thus, for all 𝛾 ∈ (0, ∞), 0 < 𝛾 (𝜇) < 2𝜇−1 for a fixed 𝜇 ∈ (1∕2, 1). By the intermediate value theorem, there exists a unique 𝑥𝛾 (0)

such that 𝛾 (𝑥𝛾 (0)) = 𝑐. Moreover, lim𝛾→0 𝑥𝛾 (0) = (𝑐 + 1)∕2 and lim𝛾→∞ 𝑥𝛾 (0) → 1.

Step 2. A dynamic equilibrium exists when 𝛾 is sufficiently large.

Let 𝑥𝛾 (𝑡) be the solution to 𝑥′𝛾 (𝑡) = 𝜙𝛾 (𝑥𝛾 (𝑡)) with initial value 𝑥𝛾 (0). A dynamic equilibrium exists at 𝛾 if 𝑥𝛾 (𝑡) is strictly increasing 
in 𝑡. I show 𝑥𝛾 (𝑡) cannot be decreasing or constant in 𝑡 when 𝛾 →∞. The result follows as 𝑥𝛾 (𝑡) is either monotone or constant (Teschl, 
2012, Lemma 1.1). The equation 𝜙𝛾 (𝑥) = 0 has at least one at most two solutions and one of them must be 1 (proof of Lemma 4). 
The other solution is obtained by setting ℎ𝛾 (𝑥̄) = (1 − 𝑐)∕(1 + 𝑐) if such 𝑥̄ exists. Take 𝛾 →∞. ℎ𝛾 (𝑥) → 0 for all 𝑥 < 1, so if there exists 
𝑥̄ such that ℎ𝛾 (𝑥̄) = (1 − 𝑐)∕(1 + 𝑐) > 0, 𝑥̄ can only be 1. Because 𝑥𝛾 (0) < 1, if 𝑥𝛾 (𝑡) is decreasing in 𝑡, 𝑥𝛾 (𝑡) must be decreasing to 
0 (Teschl, 2012, Lemma 1.1). However, as 𝑥 → 0, ℎ𝛾 (𝑥) → 0 which means 𝜙𝛾 (𝑥) > 0, a contradiction. If 𝑥𝛾 (𝑡) is constant, the above 
argument shows the solution to 𝜙𝛾 (𝑥) = 0 can only be 1, so 𝑥𝛾 (𝑡) = 1 for all 𝑡 ≥ 0. This contradicts 𝑥𝛾 (0) < 1.

Step 3. Fix two pairs of posterior belief distributions 𝐅𝛾1 and 𝐅𝛾2 with 𝛾1 < 𝛾2. If a dynamic equilibrium exists with 𝐅𝛾1 , a dynamic 
equilibrium exists with 𝐅𝛾2 .

By Claim 2, 𝑥𝛾 (𝑡) is strictly increasing in 𝑡 if and only if ℎ𝛾 (𝑥𝛾 (0)) < (1 −𝑐)∕(1 +𝑐). The result follows from ℎ𝛾2 (𝑥𝛾2 (0)) < ℎ𝛾1 (𝑥𝛾1 (0)), 
which is shown below.

Define the mixture distribution with weight 𝜆 ∈ (0, 1) as 𝐅𝜆 = (𝐹 0
𝜆
, 𝐹 1

𝜆
), where 𝐹𝜃

𝜆
= (1 − 𝜆)𝐹𝜃

𝛾1
+ 𝜆𝐹 𝜃

𝛾2
and 𝐹𝜆 = (1 − 𝜆)𝐹𝛾1 + 𝜆𝐹𝛾2 . 
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It can be verified that 𝐅𝜆 defines a pair of posterior belief distributions. By Lemma 12, 𝐹𝛾1 ≻ULR 𝐹𝜆 ≻ULR 𝐹𝛾2 . So 𝐅𝜆 is more precise 
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Fig. 6. Partition of the type space in a symmetric environment with 𝑐 = 1∕5, 𝑟 = 1∕5, and posterior beliefs induced by 𝐵𝑒𝑡𝑎(1 + 𝜃,1 + (1 − 𝜃)).

than 𝐅𝛾1 and less precise than 𝐅𝛾2 . Denote the hazard ratio of 𝐅𝜆 by ℎ𝜆(𝜇) and the initial value by 𝑥𝜆(0). Take the derivative of 
ℎ𝜆(𝑥𝜆(0)) with respect to 𝜆,

dℎ𝜆(𝑥𝜆(0))
d𝜆

= 𝜕ℎ

𝜕𝜇

d𝑥𝜆(0)
d𝜆

+ 𝜕ℎ

𝜕𝜆
= 𝜕ℎ

𝜕𝜇

(
−
𝜕∕𝜕𝜆
𝜕∕𝜕𝜇 +

𝜕ℎ∕𝜕𝜆
𝜕ℎ∕𝜕𝜇

)
.

By IHRP, 𝜕ℎ∕𝜕𝜇 > 0. The result follows from the following claim, the proof of which is mostly algebraic and is relegated to the 
Online Appendix.

Claim 4. For all 𝜇 ≥ 1∕2, − 𝜕∕𝜕𝜆
𝜕∕𝜕𝜇 + 𝜕ℎ∕𝜕𝜆

𝜕ℎ∕𝜕𝜇 < 0.

Step 4. To conclude the proof, let 𝛾 be the highest 𝛾 such that a dynamic equilibrium does not exist. That is, 𝛾 ∶= sup𝛾{𝛾 ∶
ℎ𝛾 (𝑥𝛾 (0)) ≥ (1 − 𝑐)∕(1 + 𝑐)}. By step 3, a dynamic equilibrium exists if and only if 𝛾 > 𝛾 .

Convergence The probability of initial agreement is Π𝛾 (𝑥𝛾 (0)) where Π𝛾 (𝜇) = 1 − 2(1 − 𝐹 1
𝛾 (𝜇))(1 − 𝐹 0

𝛾 (𝜇)). The following claim 
establishes the result.

Claim 5. As 𝛾 →∞, 𝐹 0
𝛾 (𝑥𝛾 (0)) → 1 and 𝐹 1

𝛾 (𝑥𝛾 (0)) → 0.

Proof. Take 𝛾 →∞. By Dini’s theorem, 𝐹 0
𝛾 (𝜇) → 1 uniformly for all 𝜇 ≥ 1∕2. Recall 𝑥𝛾 (0) → 1 (step 1 above). So 𝐹 0

𝛾 (𝑥𝛾 (0)) → 1. 
Rearrange 𝛾 (𝑥𝛾 (0)) = 𝑐,

𝐹 1
𝛾 (𝑥𝛾 (0))

(
1 −

𝑥𝛾 (0)
2𝑥𝛾 (0) − 1

𝑐

)
= 𝐹 0

𝛾 (𝑥𝛾 (0))
( 1 − 𝑥𝛾 (0)
2𝑥𝛾 (0) − 1

𝑐 − 1
)
+ 1.

Take the limit of both sides as 𝛾 →∞. Because 𝐹 0
𝛾 (𝑥𝛾 (0)) → 1 and 𝑥𝛾 (0) → 1, lim𝛾→∞ 𝐹 1

𝛾 (𝑥𝛾 (0)) (1 − 𝑐) = 0. Because 1 − 𝑐 > 0, it must 
be that 𝐹 1

𝛾 (𝑥𝛾 (0)) → 0. □

A.2.4. Proof of Proposition 7

To facilitate the proof, Fig. 6 illustrates the partition of the type space using the equilibrium (inverse) strategies. In area (i), both 
players invest initially. In area (ii), one player invests initially, the other player follows suit. In area (iii), the follower invests before 
the leader disinvests. In area (iv), the leader disinvests before the follower invests. Players do not invest in the white area.

Let 𝛾 (𝑥𝛾 (0)) denote welfare in a dynamic equilibrium with distribution 𝐅𝛾 , where 𝛾 (𝜇) is given by

𝛾 (𝜇) =(1 − 𝐹 1
𝛾 (𝜇))

2(1 − 𝑐) − (1 − 𝐹 0
𝛾 (𝜇))

2(1 + 𝑐) (i)

+ 2(1 − 𝐹 1
𝛾 (𝜇))(𝐹

1
𝛾 (𝜇) − 𝐹 1

𝛾 (1 − 𝜇))(1 − 𝑐) (ii-1)

− 2(1 − 𝐹 0
𝛾 (𝜇))(𝐹

0
𝛾 (𝜇) − 𝐹 0

𝛾 (1 − 𝜇))(1 + 𝑐) (−ii-0)

+
(
(1 − 𝐹 1

𝛾 (𝜇))𝐹
1
𝛾 (1 − 𝜇) + (1 − 𝐹 0

𝛾 (𝜇))𝐹
0
𝛾 (1 − 𝜇)

)
(−𝑐) (LF-c)

+

∞⎛⎜ 𝜏

−𝑒−𝑟𝑡(2 − 𝑐)𝑓 1(𝑦𝛾 (𝑡))𝑦′ (𝑡)d𝑡
⎞⎟𝑓 1(𝑥𝛾 (𝜏))𝑥′ (𝜏)d𝜏 (LF-1)
164

∫
0

⎜⎝∫0 𝛾 𝛾 ⎟⎠ 𝛾 𝛾



Games and Economic Behavior 144 (2024) 141–166B. Zhou

−

∞

∫
0

⎛⎜⎜⎝
𝜏

∫
0

−𝑒−𝑟𝑡(2 + 𝑐)𝑓 0
𝛾 (𝑦𝛾 (𝑡))𝑦

′
𝛾 (𝑡)d𝑡

⎞⎟⎟⎠𝑓 0
𝛾 (𝑥𝛾 (𝜏))𝑥

′
𝛾 (𝜏)d𝜏 (−LF-0)

where by symmetry, 𝐹 1
𝛾 (1 − 𝜇) = 1 − 𝐹 0

𝛾 (𝜇) and 𝐹 0
𝛾 (1 − 𝜇) = 1 − 𝐹 1

𝛾 (𝜇).
The first line i is the welfare in the case where the two players’ types fall in area (i) in Fig. 6. The second line ii-1 is the welfare 

if the two players’ type fall in area (ii) conditional on 𝜃 = 1 and the third line −ii-1 is the welfare if the two players’ type fall in 
area (ii) conditional on 𝜃 = 0. The fourth line LF-c is the welfare loss if the players’ type fall in the region where the game would 
enter the leader-follower continuation game, namely, area (iii) and (iv). The last two lines, LF-1 and LF-0 are the welfare in the 
leader-follower continuation game area (iii) and (iv) conditional on 𝜃 = 1 and 𝜃 = 0 respectively.

Take 𝛾 →∞. By Claim 5, i + ii-1 − ii-0 → 1 − 𝑐 and LF-c → 0. Because LF-1 and LF-0 are both positive and decreasing in 𝑟
(keeping 𝑥𝛾 (𝑡) and 𝑦𝛾 (𝑡) fixed), LF-1 − LF-0 is bounded above by LF-1 evaluated at 𝑟 = 0 and bounded below by −LF-0 evaluated at 
𝑟 = 0:

LF-1 − LF-0 ≤ (2 − 𝑐)

1

∫
𝑥𝛾 (0)

(
𝐹 0
𝛾 (𝑥) − 𝐹 0

𝛾 (𝑥𝛾 (0))
)
𝑓 1
𝛾 (𝑥)d𝑥,

LF-1 − LF-0 ≥ −(2 + 𝑐)

1

∫
𝑥𝛾 (0)

(
𝐹 1
𝛾 (𝑥) − 𝐹 1

𝛾 (𝑥𝛾 (0))
)
𝑓 0
𝛾 (𝑥)d𝑥.

Because the integrands are finite and 𝑥𝛾 (0) → 1, both the upper and the lower bounds converge to zero. So LF-1 − LF-0 → 0. The 
full-efficiency payoff is given by ∗ = 2 Pr(𝜃 = 1)(1 − 𝑐) = 1 − 𝑐. So 𝛾 (𝑥𝛾 (0)) → ∗.

A.3. Proofs for Section 5

A.3.1. Proof of Proposition 8

Characterizing 𝑥ir and 𝑦ir I maintain the assumption that players use symmetric monotonic strategies. A similar argument to Lemma 8

shows players do not invest after no initial investment. By MLRP, there exists a threshold 𝑥ir in the first stage of time 0 such that a 
player invests in the first stage if and only if his type is above 𝑥ir, and a threshold 𝑦ir in the second stage of time 0 such that a player 
invests if and only if his type is above 𝑦ir. 𝑥ir’s indifference condition is the same as the initial threshold 𝑧’s indifference condition in 
the dynamic equilibrium, which is 𝑊0(𝑥ir, 𝑦ir) = 𝑐, where

𝑊0(𝑥, 𝑦) ∶=
𝜌0𝑓

1(𝑥)(𝐹 1(𝑥) − 𝐹 1(𝑦))𝐻
𝜌0𝑓

1(𝑥)𝐹 1(𝑥) + (1 − 𝜌0)𝑓 0(𝑥)𝐹 0(𝑥)
−

(1 − 𝜌0)𝑓 0(𝑥)(𝐹 0(𝑥) − 𝐹 0(𝑦))𝐿
𝜌0𝑓

1(𝑥)𝐹 1(𝑥) + (1 − 𝜌0)𝑓 0(𝑥)𝐹 0(𝑥)
.

Given the other player’s type is above 𝑥ir, type 𝑦ir is indifferent between investing right away and never investing. His indifference 
condition is 𝑊1(𝑥ir, 𝑦ir) = 𝑐, where

𝑊1(𝑥, 𝑦) ∶=
𝜌0𝑓

1(𝑦)(1 − 𝐹 1(𝑥))𝐻
𝜌0𝑓

1(𝑦)(1 − 𝐹 1(𝑥)) + (1 − 𝜌0)𝑓 0(𝑦)(1 − 𝐹 0(𝑥))

−
(1 − 𝜌0)𝑓 0(𝑦)(1 − 𝐹 0(𝑥))𝐿

𝜌0𝑓
1(𝑦)(1 − 𝐹 1(𝑥)) + (1 − 𝜌0)𝑓 0(𝑦)(1 − 𝐹 0(𝑥))

.

Comparing to 𝑥(0) and 𝑦(0) Recall that the set of initial values (𝑥(0), 𝑦(0)) of the dynamic equilibrium solves 𝑊0(𝑥, 𝑦) = 𝑐 and 
𝑊 ∗(𝑥, 𝑦) = 0, where

𝑊 ∗(𝑥, 𝑦) ∶= 𝜌0𝑓
1(𝑦)𝑓 1(𝑥)𝐻 − (1 − 𝜌0)𝑓 0(𝑦)𝑓 0(𝑥)𝐿.

Fig. 7 illustrates 𝑥ir > 𝑥(0) and 𝑦ir < 𝑦(0). 𝑊 ∗(𝑥, 𝑦) = 0 and 𝑊1(𝑥, 𝑦) = 𝑐 defines decreasing curves. 𝑊0(𝑥, 𝑦) = 𝑐 defines a decreasing 
curve below 𝑊 ∗(𝑥, 𝑦) = 0 and an increasing one above 𝑊 ∗(𝑥, 𝑦) = 0. Claim 6 formalizes this observation.

Claim 6. For all (𝑥, 𝑦) ∈ (0, 1)2, the following holds:

(i) 𝜕𝑊 ∗(𝑥, 𝑦)∕𝜕𝑥 > 0 and 𝜕𝑊 ∗(𝑥, 𝑦)∕𝜕𝑦 > 0;

(ii) 𝜕𝑊1(𝑥, 𝑦)∕𝜕𝑥 > 0 and 𝜕𝑊1(𝑥, 𝑦)∕𝜕𝑦 > 0;

(iii) 𝜕𝑊0(𝑥, 𝑦)∕𝜕𝑦 ≥ 0 if and only if 𝑊 ∗(𝑥, 𝑦) ≤ 0;

(iv) For 𝑥 > 𝑦 and 𝑊0(𝑥, 𝑦) > 0, 𝜕𝑊0(𝑥, 𝑦)∕𝜕𝑥 > 0.

Because 𝑊 ∗(𝑥(0), 𝑦(0)) = 0 and 𝑊0(𝑥(0), 𝑦(0)) = 𝑐, by Claim 6 (i), (iii), and (iv), if 𝑊0(𝑥ir, 𝑦ir) = 𝑐, either 𝑥ir > 𝑥(0) and 𝑦ir <

𝑦(0), or 𝑥ir > 𝑥(0) and 𝑦ir > 𝑦(0). Recall the analysis of the follower’s first-order condition in Section 3. 𝑦(0)’s marginal cost is 
strictly positive, which implies 𝑊1(𝑥(0), 𝑦(0)) > 𝑐. By Claim 6 (ii), if 𝑥ir > 𝑥(0) and 𝑦ir > 𝑦(0), 𝑊1(𝑥ir, 𝑦ir) >𝑊1(𝑥(0), 𝑦(0)) > 𝑐, which 
165

contradicts the equilibrium condition 𝑊1(𝑥ir, 𝑦ir) = 𝑐. Therefore, it must be 𝑥ir > 𝑥(0) and 𝑦ir < 𝑦(0).
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Fig. 7. (𝑥(0), 𝑦(0)) and (𝑥ir, 𝑦ir) in a symmetric environment with 𝑐 = 1∕50, 𝑟 = 1∕5, and posterior beliefs distributed according to 𝐵𝑒𝑡𝑎(1 + 𝜃,1 + (1 − 𝜃)).

Proof of Claim 6. (i), (ii), and (iii) follow directly from MLRP. For (iv), fix 𝑥 > 𝑦 and 𝑊0(𝑥, 𝑦) > 0 (both are necessary conditions 
for equilibrium). Note that

𝑊0(𝑥, 𝑦) =Pr(𝑠−𝑖 ∈ [𝑦,𝑥]|𝑠𝑖 = 𝑥, 𝑠−𝑖 ≤ 𝑥)

⋅
[
Pr(𝜃 = 1|𝑠𝑖 = 𝑥, 𝑠−𝑖 ∈ [𝑦,𝑥])𝐻 − Pr(𝜃 = 0|𝑠𝑖 = 𝑥, 𝑠−𝑖 ∈ [𝑦,𝑥])𝐿

]
.

By MLRP and Lemma 5, Pr(𝜃 = 1|𝑠𝑖 = 𝑥, 𝑠−𝑖 ∈ [𝑦, 𝑥]) is increasing in 𝑥. Let 𝑞(𝑥) = Pr(𝜃 = 1|𝑠𝑖 = 𝑥, 𝑠−𝑖 ≤ 𝑥). So Pr(𝑠−𝑖 ∈ [𝑦, 𝑥)|𝑠𝑖 =
𝑥, 𝑠−𝑖 ≤ 𝑥) =

(
1 − 𝐹 1(𝑦)∕𝐹 1(𝑥)

)
𝑞(𝑥) +

(
1 − 𝐹 0(𝑦)∕𝐹 0(𝑥)

)
(1 − 𝑞(𝑥)), which is increasing in 𝑥 by MLRP. □

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .geb .2024 .01 .006.
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